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Some Types of Automata

Boolean [0,1] Σ∗

Deterministic DFA PDFA DFT

Non-deterministic NFA PNFA NFT

Overview

1. Learning arbitrary DFAs, PDFAs, DFTs

2. Subregular classes of stringsets

3. Learning them from positive examples

4. Strictly Local string-to-string functions

5. Relations!

Morales: Determinism is important. Monoids are too.
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Classes of stringsets and functions

Theorems

1. No algorithm identifies the regular stringsets in the limit from

positive data only.

2. Algorithm RPNI identifies the regular stringsets in the limit

from positive and negative data.

3. Algorithm ALERGIA identifies the class of stochastic stringsets

expressed with PDFAs in the limit with probability one.

4. Algorithm OSTIA identifies the class of total sequential

functions (those expressed with DFTs) in the limit.

• These algorithms are non-parametric: both the automaton’s

structure and the transitional values are learned.

• Time complexities are generally cubic in the size of the input

data.

(Oncina and Garcia 1992, Oncina et al. 1993, Carrasco and Oncina 1994,

de la Higuera and Thollard 2000, de la Higuera 2010)
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de la Higuera 2010

This book explains those algorithms and some variants.
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Formal Language Hierarchies

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

Regular

NC

LTT

LT PT

SL SP

Finite
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Subregular Classes of Stringsets

Regular

Star-Free

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Rogers and Pullum 2011, Rogers et al. 2013)
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Strictly k-Local Stringsets

A stringset L is Strictly k-Local iff there are finitely many strings

ℓ1, . . . ℓnℓ
, w1, . . . wnw

, r1, . . . rnr
, the longest of which is length k,

such that

L = ℓ1Σ∗ ∩ . . . ∩ ℓnℓ
Σ∗

∩Σ∗w1Σ∗ ∩ . . . ∩ Σ∗wnw
Σ∗

∩Σ∗r1 ∩ . . . ∩ Σ∗rnr

Essentially, L forbids certain strings at left edges, right edges, and

string-internally.

• SLk := {L | L is Strictly k-Local}

• SL :=
⋃

k SLk

Thm. For all k, SLk ( SLk+1.

(McNaughton and Papert 1971)
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Strictly k-Local Stringsets, Pictorially

• To check whether a string belongs to a given Strictly k-Local

stringset, we can just scan a window of size k checking for

forbidden strings ℓi, wi, ri.

b a b a ba aaa b... ...b
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Finite-State Acceptor for Strictly k-Local Stringsets

Thm. There is a deterministic finite-state acceptor (DFA) whose

sub-DFAs correspond to every L ∈ SLk.

• The states correspond to the last k − 1 symbols read.

• Formally: Q = Σ≤k−1 and δ(q, a) = Suffk−1(qa).

aw

wb

wc

b

c

|w| = k − 2 awb is a permissible substring.

awc is a forbidden substring.
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N-gram models are stochastic variants of SLn stringsets

• The states correspond to the last k − 1 symbols read.

• Formally: Q = Σ≤k−1 and δ(q, a) = Suffk−1(qa).

aw

wb

wc

b : p1

c : p2

|w| = k − 2

p1 = P (b | aw)

p2 = P (c | aw)
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SLk Theorems on Learning

1. For each k, there is an algorithm which identities SLk in the

limit from positive data.

2. The time complexity is linear in the size of the data and its

data complexity is linear in the size of the automata-theoretic

representation.

3. Though the DFA is of size |Σ|k−1.

Stochastic SLk Theorems on Learning (k-gram model)

1. For each k, there is an algorithm which outputs parameters of

the k-gram model which maximize the likelihood of D (MLE).

2. If D was drawn from i.i.d. from a k-gram model then as D gets

larger, then the error between learned parameters and true

parameters goes to zero (consistency).

3. The time complexity is linear in the size of D.

(Garcia et al. 1991, Jurafsky and Martin 2008)
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SL Example: Σ = {a, b}, k = 2

DFA

λ

a

b

a

b
ba

a

b
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SL Example: Σ = {a, b}, k = 2

DFA

λ

a

b

a

b
ba

a

b

D = {aab}
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SL Example: Σ = {a, b}, k = 2

DFA

λ

a

b

a

b
ba

a

b

D = {aab}

L = aa∗b
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SL Example: Σ = {a, b}, k = 2

PDFA

λ

a

b

1 �

�

�

a:�

b:�
b:�a:�

a:�

b:�

14



SL Example: Σ = {a, b}, k = 2

DFA

λ

a

b

1 0

0

1

a:1

b:0
b:1a:0

a:2

b:0

D = {aaab}
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SL Example: Σ = {a, b}, k = 2

DFA

λ

a

b

1 0

0

1

a:1

b:0
b:0.33a:0

a:0.67

b:0

D = {aaab}

L = aa∗b
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Subregular Classes of Stringsets

Regular

Star-Free

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Rogers and Pullum 2011, Rogers et al. 2013)
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Other subregular classes

Locally Testable. Boolean closure of SL. Parameterized by

window-size k.

“If aa is a substring then bb must also be a substring.”

Locally Threshold Testable. Adds to LT the counting of

substrings up to a threshold t. Parameterized by k, t.

“If there are three aa substrings then bb must also be a substring.”

(Thomas 1982, McNaughton and Papert 1971, Rogers and Pullum 2011)
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Other subregular classes

Strictly Piecewise. Forbids subsequences of size k.

“Words with neither a . . . b nor b . . . b as subsequences.”

Piecewise Testable. Boolean closure of SP. Parameterized by k.

“If a . . . a is subsequence then b . . . b is a subsequence.”

(Simon 1975, Rogers et al. 2010, 2013)
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Star-free Stringsets

• Theoretically, regular expressions (RE) have three operations:

· (concatenation), + (union), ∗ (Kleene star) and

base cases ∅, λ, σ ∈ Σ.

• Generalized REs (GRE) add two more operations:

(complementation w.r.t. Σ∗) and × (intersection)

• Star-Free stringsets are all and only those that can be

expressed with a GRE with no Kleene star ∗.

Thms. Star-Free ≡ closure of LT under concatenation

≡ First-Order definable stringsets with precedence model

(McNaughton and Papert 1971)
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Subregular Classes of Stringsets

Regular

Star-Free

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Rogers and Pullum 2011, Rogers et al. 2013)
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Learning results

Thms. For all k, t:

1. For each t, k, SLk, LTk, LTTt,k, SPk, and PTk are identifiable

in the limit from positive data.

2. The time complexity of these algorithms is linear in the size of

the data and the data complexity is linear in the size of the

automata-theoretic representation.

3. Though, except for SPk, the automata-theoretic representation

is exponential in |Σ|k−1.

4. For each class C in
⋃

k,t

{SLk,LTk,LTTt,k, SPk,PTk} ,

there is a deterministic, automata-theoretic representation A

such that every stringset in C is a sub-representation of A.

(Heinz and Rogers 2013)
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Learning Stochastic Stringsets

For each k, t, the automata-theoretic representation of each

SLk,LTk,LTTt,k, SPk,PTk provides a parametric model M of a

family of stochastic stringsets whose parameters are the

probabilities of the transitions in the automata.

Thms. For each model M and finite positive sample D:

• There is an algorithm which returns parameters of M which

maximize the likelihood of D (MLE).

• If D was drawn from i.i.d from parameters set in M then as D

gets larger, then the error between learned parameters and true

parameters goes to zero (consistency).

• The time complexity is linear in the size of D.

(Vidal et al. 2005, Heinz and Rogers 2010)
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Subregular Classes of Stringsets

Regular

Star-Free

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Rogers and Pullum 2011, Rogers et al. 2013)
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Linguistic Motivation

Doing typology requires two books:

• “encyclopedia of categories”
• “encyclopedia of types”

Hypothesis: Natural language phonotac-

tics belongs to the conjunction of SL and SP

constraints.

• Heinz 2010, 2014, forthcoming
• Heinz and Idsardi 2011, 2013
• Rogers et al. 2012
• Rogers and Lambert 2017
• cf. Heinz et al. 2011

Wilhelm Von

Humboldt
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Well-formedness and Transformations

• Linguistic generalizations are not just constraints on

well-formedness!

• They also describe transformations from one representation to

another!
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How do these classes generalize to functions and

relations?

Regular

Star-Free

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals
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Strictly Local Functions

• Keep the structure of the DFA.

• Output strings instead of Boolean values or probabilities.

λ

a

b

� �

�

�

a:�

b:�
b:�a:�

a:�

b:�

(Chandlee 2014, 2017, Chandlee et al. 2014, 2015 Chandlee and Heinz 2018)
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Input Strictly Local Functions

x0 x1 . . . xn

↓

u0 u1 . . . un

where

1. Each xi is a single symbol and each ui is a string.

2. There exists a k ∈ N such that for all input symbols xi its

output string ui depends only on xi and the k − 1 elements

immediately preceding xi.
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Input Strict Locality: Main Idea in a Picture

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Figure 1: Illustrating an Input Strictly 3-Local function. The output

string u of each input element x depends only on x and its two

preceding input elements.
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What can be modeled with ISL functions?

1. Many individual phonological and morphological processes.

• local substitution, deletion, epenthesis, metathesis, . . .

• affixation, truncation, much partial reduplication, . . .

2. Transformations describable with rules R: A −→ B / C D

where

• CAD is a finite set,

• R applies simultaneously, and

• contexts, but not targets, can overlap

are ISL for k equal to the longest string in CAD.

(Chandlee 2014, Chandlee 2017, Chandlee and Heinz 2018)
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What can be modeled with ISL functions?

3. Approximately 95% of the individual processes in P-Base

(v.1.95, Mielke (2008))

4. Many opaque transformations without any special modification.

(Chandlee 2014, Chandlee and Heinz 2018, Chandlee et al. to appear)
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Interim Summary

Many phonological and morphological transformations have the

necessary information to decide the output contained within a

window of bounded length on the input side.

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...
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What phonological processes CANNOT be

modeled with ISL functions

1. Progressive and regressive spreading

/peNawasan/ 7→ [peNãw̃ãsan] ‘supervision’

(Johore Malay, Onn 1980)

2. Long-distance (unbounded) consonant and vowel harmony

/ku-kinis-il-a/ 7→ [kukinisina] ‘to make dance for’

(Kikongo, Odden 1994)

(Chandlee 2014, Chandlee and Heinz, 2018)
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Left Output SL Functions

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Left OSL definition. The output u written when reading an

input symbol x depends only on x and the previous k − 1 symbols

written to the output.
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Right Output SL Functions

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Right OSL definition. Processing the input and output tapes

from right to left, the output u written when reading an input

symbol x depends only on x and the previous k − 1 symbols

written to the output.
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Left and Right Input-Output SL functions

u

b a b a ba aaa b... ...

x

b a b a ba aaa b... ...b

b

ISL and OSL functions can be synthesized so that the output

depends on a window of size k in the input and a window of size k′

in the left or right output.

(Chandlee, Eyraud and Heinz, in progress)
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Comparison with Kaplan and Kay 1994

How does “aa→b” apply to aaa?

KK94 left-to-right: ba OSL-L: ba

KK94 right-to-left: ab OSL-R: ab

KK94 simultaneous: {ab,ba} ISL: bb

Chomsky and Halle, SPE, p. 344: “To apply a rule, the entire

string is first scanned for segments that satisfy the environmental

constraints of the rule. After all such segments have been identified

in the string, the changes required by the rule are applied

simultaneously.”
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Strictly Local Functions

Thms.

1. For all k, ISLk ( ISLk+1.

2. For all k, L-OSLk ( L-OSLk+1.

3. For all k, R-OSLk ( R-OSLk+1.

4. ISLk, L-OSLk, and R-OSLk are incomparable.

5. For each k, algorithm SOSFIA identities ISLk in the limit from

positive data with linear time and data complexity.

6. For each k, algorithm OSLFIA identifies (L/R)-OSLk in the

limit from positive data with quadratic time and data

complexity.

(Jardine et al. 2014, Chandlee et al. 2015)
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SOSFIA (and OSLFIA) calculate the minimal

change

1. The output label for δ(q, a) is the minimal change between the

common outputs of qΣ∗ and qaΣ∗ (cf. onwardness).

2. The common output of an input prefix w in a sample

S ⊂ Σ∗ ×∆∗ for t is the lcp of all t(wv) that are in S:

common outS(w) = lcp

(

{u ∈ ∆∗ | ∃v s.t. (wv, u) ∈ S}
)

3. The minimal change in the output in S ⊂ Σ∗ ×∆∗ from w to

wσ is:

min changeS(w, σ) =






common outS(σ) if w = λ

common outS(w)
−1common outS(wσ) otherwise

(Jardine et al. 2014, Chandlee et al. 2015)
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Example illustrating min change with np→m (k=2)

If

S =















(anpa , ama), (anpo , amo),

(ana , ana), (ano , ano),

(anda , anda), (ando , ando)















Then

1. common outS(a) = a

2. common outS(an) = a

3. min changeS(a, n) = λ

4. min change(an, p) = m

5. min change(an, a) = na

6. min change(an, d) = nd

a n

d

p

n:�

a:�
p:�

d:�
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Example illustrating min change with np→m (k=2)

If

S =















(anpa , ama), (anpo , amo),

(ana , ana), (ano , ano),

(anda , anda), (ando , ando)















Then

1. common outS(a) = a

2. common outS(an) = a

3. min changeS(a, n) = λ

4. min change(an, p) = m

5. min change(an, a) = na

6. min change(an, d) = nd

a n

d

p

n:λ

a:na
p:m

d:nd
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How do these classes generalize to functions and

relations?

Regular

Star-Free

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals
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Subregular Classes of Regular Relations

NFT

DFT

41



Subregular Classes of Regular Relations

NFT

DFT-L DFT-R

(Elgot and Mezei 1956)
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Subregular Classes of Regular Relations

1-NFT

1-DFT-L 1-DFT-R

(Elgot and Mezei 1956)
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Subregular Classes of Regular Relations

1-NFT 2-DFT

2-NFT

1-DFT-L 1-DFT-R

(Elgot and Mezei 1956, Filiot and Reynier 2016)
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Subregular Classes of Regular Relations

1-NFT 2-DFT

2-NFT

1-DFT-L 1-DFT-R

OSL-L ISL OSL-R
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Subregular Classes of Regular Relations

1-NFT 2-DFT

2-NFT

1-DFT-L 1-DFT-R

OSL-L ISL OSL-R

Relations

Functions
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Strictly Local Relations?

Boolean [0,1] Σ∗

Deterministic DFA PDFA DFT

Non-deterministic NFA PNFA NFT
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The Weighted Perspective

Monoid Set Product Identity

Boolean {T,F} ∧ T

Real [0,1] × 1

Strings Σ∗ · λ

Languages ℘(Σ∗) · {λ}

λ

a

b

� �

�

�

a:�

b:�
b:�a:�

a:�

b:�
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The Weighted Perspective

Monoid Set Product Identity

Boolean {T,F} ∧ T

Real [0,1] × 1

Strings Σ∗ · λ

Languages ℘(Σ∗) · {λ}

λ

a

b

� �

�

�

a:�

b:�
b:�a:�

a:�

b:�

Monoid Set Product Identity

Finite Lgs FIN · {λ}

Regular Lgs DFA · {λ}
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Summary and Conclusion

1. Subregular classes characterize the nature of local and

non-local dependencies in patterns.

2. These classes were originally defined to describe sets of strings.

3. They can be generalized to probability distributions over

strings and string-to-string transductions.

4. Many of these classes are parameterized which lead to

parametric learning models with sound theoretical results.

5. The more general weighted perspective will plausibly lead to

parametric learning models for relations.

6. Natural languages are not arbitrary so building in structure to

the learning models helps.
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Thanks!

Regular

Star-Free

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Successor Precedence

Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals
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