
Deterministic Analyses of Optional
Processes

Jeffrey Heinz

Rutgers University
November 22, 2019

Rutgers U. | 2019/11/22 J. Heinz | 1

Part I

What am I talking about?

Rutgers U. | 2019/11/22 J. Heinz | 2

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 Metathesis (Chandlee and Heinz 2012)

3 Locally-triggered processes (Chandlee 2014, Chandlee and
Heinz 2018)

4 Consonant harmony (Luo 2017)

5 Consonant disharmony (Payne 2017)

6 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 X Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 Metathesis (Chandlee and Heinz 2012)

3 Locally-triggered processes (Chandlee 2014, Chandlee and
Heinz 2018)

4 Consonant harmony (Luo 2017)

5 Consonant disharmony (Payne 2017)

6 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 X Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 X Metathesis (Chandlee and Heinz 2012)

3 Locally-triggered processes (Chandlee 2014, Chandlee and
Heinz 2018)

4 Consonant harmony (Luo 2017)

5 Consonant disharmony (Payne 2017)

6 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 X Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 X Metathesis (Chandlee and Heinz 2012)

3 X Locally-triggered processes (Chandlee 2014, Chandlee
and Heinz 2018)

4 Consonant harmony (Luo 2017)

5 Consonant disharmony (Payne 2017)

6 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 X Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 X Metathesis (Chandlee and Heinz 2012)

3 X Locally-triggered processes (Chandlee 2014, Chandlee
and Heinz 2018)

4 X Consonant harmony (Luo 2017)

5 Consonant disharmony (Payne 2017)

6 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 X Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 X Metathesis (Chandlee and Heinz 2012)

3 X Locally-triggered processes (Chandlee 2014, Chandlee
and Heinz 2018)

4 X Consonant harmony (Luo 2017)

5 X Consonant disharmony (Payne 2017)

6 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 X Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 X Metathesis (Chandlee and Heinz 2012)

3 X Locally-triggered processes (Chandlee 2014, Chandlee
and Heinz 2018)

4 X Consonant harmony (Luo 2017)

5 X Consonant disharmony (Payne 2017)

6 7 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

Deterministic transformations in phonology

To what extent are transformations in phonology deterministic?

1 X Vowel harmony (Gainor et al. 2012, Heinz and Lai 2013)

2 X Metathesis (Chandlee and Heinz 2012)

3 X Locally-triggered processes (Chandlee 2014, Chandlee
and Heinz 2018)

4 X Consonant harmony (Luo 2017)

5 X Consonant disharmony (Payne 2017)

6 7 Unbounded Tone Plateauing (Jardine 2016)

7 7 Vowel harmony (McCollum et al. 2019)

Rutgers U. | 2019/11/22 J. Heinz | 3

What is ‘determinism’? Why does it matter?
• A function f is deterministic iff there is an algorithm

computing f whose execution at any time step is uniquely
determined.

• It is non-deterministic iff there is no such algorithm—i.e.
every algorithm computing f necessarily includes some
time-step on some input where there is more than one
possible path the computation can follow.

Rutgers U. | 2019/11/22 J. Heinz | 4

Why does it matter?

Phonology

Rutgers U. | 2019/11/22 J. Heinz | 5

Why does it matter?

Phonology

Non-deterministic functions

Rutgers U. | 2019/11/22 J. Heinz | 5

Why does it matter?

Phonology

Non-deterministic functions

Deterministic functions

Rutgers U. | 2019/11/22 J. Heinz | 5

Why does it matter?

• If the hypothesis is correct, it provides a better, tighter
characterization.

• We are closer to a minimally necessary characterization.

• A deterministic characterization helps learning.

1 Smaller, better hypothesis space means there are ‘fewer’
hypotheses to consider.

2 Determinism helps avoid the credit/hidden structure
problem (Dresher and Kaye 1990, Tesar and Smolensky
2000, Heinz et al. 2015, Jarosz 2019).

• Practical: Deterministic finite-state automata process
inputs in linear time, have efficient minimization
algorithms, often have canonical forms for deciding
equivalence and so on.

Rutgers U. | 2019/11/22 J. Heinz | 6

Another challenge

One challenge to the idea that phonological processes are
deterministic comes from optionality.

McCollum et al. 2019:19

. . . patterns of optionality like those listed in Vaux (2008) and
others like iterative optionality in Icelandic umlaut (Anderson
1974) present evidence against any strong claim that segmental
phonology is categorically subregular.

Rutgers U. | 2019/11/22 J. Heinz | 7

Today

1 I will show how iterative optionality can be expressed
and learned with deterministic ISL functions building on
Jardine et al. (2014).

2 It will be important to rely on phonotactic generalizations
to manage output-oriented aspects of these patterns.

3 The grammatical analysis obtained closely resembles the
original proposal by Kisseberth (1970) and others.

Joint work with Kiran Eiden and Eric Schieferstein

Rutgers U. | 2019/11/22 J. Heinz | 8

Part II

Optionality and Determinism

Rutgers U. | 2019/11/22 J. Heinz | 9

Iterative Optionality

Vaux 2008, p. 43

Rutgers U. | 2019/11/22 J. Heinz | 10

Optional Syncope as a finite-state function

V → ∅ / VC CV (applying left-to-right)

1start

2

3 4

5

6

c:c

v:v

v:v

c:c

v:v

v:λ
c:c

v:v

Rutgers U. | 2019/11/22 J. Heinz | 11

Optional Syncope as a finite-state function

1start

2

3 4

5

6

c:c

v:v

v:v

c:c

v:v

v:λ
c:c

v:v

/ c v c v c v c v /

1 2 3 4

3 4
3 4 3

5 6 3

5 6 3 4 3
c v c

v:v c

v:v
c v

v:λ c v

v:λ
c v c v

Rutgers U. | 2019/11/22 J. Heinz | 11

Multiple outputs implies non-determinism,
right?

• A function is single-valued if there is at most one output
for each input.

• What is the relationship between single-valuedness and
determinism?

1 Does single-valuedness imply determinism?
2 Does determinism imply single-valuedness?

• I argue the answer to both questions is No.

1 Sour-grapes Vowel Harmony is single-valued but
non-deterministic (Heinz and Lai 2013).

2 The second is more interesting; let me explain. . .

Rutgers U. | 2019/11/22 J. Heinz | 12

Multiple outputs implies non-determinism,
right?

• A function is single-valued if there is at most one output
for each input.

• What is the relationship between single-valuedness and
determinism?

1 Does single-valuedness imply determinism?
2 Does determinism imply single-valuedness?

• I argue the answer to both questions is No.

1 Sour-grapes Vowel Harmony is single-valued but
non-deterministic (Heinz and Lai 2013).

2 The second is more interesting; let me explain. . .

Rutgers U. | 2019/11/22 J. Heinz | 12

Multiple outputs implies non-determinism,
right?

• A function is single-valued if there is at most one output
for each input.

• What is the relationship between single-valuedness and
determinism?

1 Does single-valuedness imply determinism?
2 Does determinism imply single-valuedness?

• I argue the answer to both questions is No.

1 Sour-grapes Vowel Harmony is single-valued but
non-deterministic (Heinz and Lai 2013).

2 The second is more interesting; let me explain. . .

Rutgers U. | 2019/11/22 J. Heinz | 12

Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Non-deterministic)

1start 2

n:n
p:p

a:a

p:p

p:b

a:a

n:n

Rutgers U. | 2019/11/22 J. Heinz | 13

Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Non-deterministic)

1start 2

n:n
p:p

a:a

p:p

p:b

a:a

n:n

/ a n p a /

1 1 2
1 1

1 1a n

p:p
a

p:b a

Rutgers U. | 2019/11/22 J. Heinz | 13

Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Deterministic)

1start 2

n:{n}
p:{p}

a:{a}

p:{p,b}

a:{a}

n:{n}

Beros and de la Higuera (2016) call this ‘semi-determinism’.

Rutgers U. | 2019/11/22 J. Heinz | 13

Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Deterministic)

1start 2

n:{n}
p:{p}

a:{a}

p:{p,b}

a:{a}

n:{n}

/ a n p a /

1 1 2 1 1
{a} {n} {p,b} {a}

Rutgers U. | 2019/11/22 J. Heinz | 13

Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Deterministic)

1start 2

n:{n}
p:{p}

a:{a}

p:{p,b}

a:{a}

n:{n}

/ a n p a / 7→ {a} · {n} · {p, b} · {a} = {anpa, anba}

Rutgers U. | 2019/11/22 J. Heinz | 13

That’s the basic idea.

Monoids for Transducers

Name K ⊗ 1

String Σ∗ · λ Σ∗ → Σ∗

Boolean {T, F} ∧ true Σ∗ → {T, F}
Natural N + 0 Σ∗ → N
Real Interval [0, 1] × 1 Σ∗ → [0, 1]
FIN {L ⊆ Σ∗ | L finite} · {λ} Σ∗ → FIN

• Beros and de la Higuera’s ‘semi-determinism’ is a
deterministic string transucer whose output is drawn
from the monoid of finite languages with multiplication as
language concatenation (and other conditions, TBA).

Rutgers U. | 2019/11/22 J. Heinz | 14

Part III

But it’s not that simple. . .

Rutgers U. | 2019/11/22 J. Heinz | 15

Issue #1: Output-oriented Optionality

1start

2

3 4

5

6

c:c

v:v

v:v

c:c

v:v

v:λ
c:c

v:v

• The output determines the state!

• 4 ??
v:{v,λ}

• For deterministic transducers, the next state is necessarily
determined by the input symbol!

Rutgers U. | 2019/11/22 J. Heinz | 16

Issue #2: Pairwise Incomparability

Informally, a finite set of strings S is pairwise incomparable
provided, for each pair of distinct strings drawn from S, neither
is a proper prefix of the other.

Rutgers U. | 2019/11/22 J. Heinz | 17

Issue #2: Pairwise Incomparability

Informally, a finite set of strings S is pairwise incomparable
provided, for each pair of distinct strings drawn from S, neither
is a proper prefix of the other.

Formally

• We write x < y if there is a string z 6= λ such that y = xz.

• If x = y, x < y or x > y then say x and y are
comparable.

• Otherwise, we say that x and y are incomparable and
write x⊥y.

• A finite set of strings S is pairwise incomparable iff
for each x, y ∈ S, we have x⊥y.

Rutgers U. | 2019/11/22 J. Heinz | 17

Issue #2: Pairwise Incomparability

• Beros and de la Higuera (2016) require the output sets on
each transition to be pairwise incomparable.

• This allows them to establish a minimal, canonical form for
a class of functions Σ∗ → FIN.

• How they do this is informative, and I will return to it
momentarily.

Rutgers U. | 2019/11/22 J. Heinz | 17

Enforcing Pairwise-incomparability

Optional /a/-deletion
(Deterministic)

1 2

3

4

a:{a,λ}

t:{t}

k:{k}

• S = {a,λ} is not pairwise incomparable!

Rutgers U. | 2019/11/22 J. Heinz | 18

Resolving Issue #2: Pairwise Incomparability

Optional /a/-deletion
(Deterministic & Pairwise Incomparable)

1 2

3

4

a:{λ}

t:{t,at}

k:{k,ak}

• By ‘pushing’ outputs, we can get pairwise incomparability!

Rutgers U. | 2019/11/22 J. Heinz | 19

Issue #1: Output-oriented Optionality
Let’s call this transducer T.

1start

2

3 4

5

6

c:c

v:v

v:v

c:c

v:v

v:λ
c:c

v:v

• The output determines the state!

• 4 ??
v:{v,λ}

• For deterministic transducers, the next state is necessarily
determined by the input symbol!

Rutgers U. | 2019/11/22 J. Heinz | 20

Resolving Issue #2: Examine examples of the
transformation

/cvcv/ /cvcvcv/ /cvcvcvcv/ /cvcvcvcvcv/

cvcv cvcvcv cvcvcvcv cvcvcvcvcv faithful
cvccv cvccvcv cvccvcvcv 2nd vowel deletes

cvcvccv cvcvccvcv 3rd vowel deletes
cvccvccv 2nd, 4th vowels delete

Rutgers U. | 2019/11/22 J. Heinz | 21

Resolving Issue #2: Examine examples of the
transformation

/cvcv/ /cvcvcv/ /cvcvcvcv/ /cvcvcvcvcv/

cvcv cvcvcv cvcvcvcv cvcvcvcvcv faithful
cvccv cvccvcv cvccvcvcv 2nd vowel deletes

cvcvccv cvcvccvcv 3rd vowel deletes
cvccvccv 2nd, 4th vowels delete

Observations:

• No complex syllable margins!

Rutgers U. | 2019/11/22 J. Heinz | 21

Resolving Issue #2: What would Kisseberth
say?

Kisseberth 1970: 304-305

By making . . . rules meet two conditions (one relating to the
form of the input string and the other relating to the form
of the output string; one relating to a single rule, the other
relating to all the rules in the grammar), we are able to write
the vowel deletion rules in the intuitively correct fashion. We
do not have to mention in the rules themselves that they cannot
yield unpermitted clusters. We state this fact once in the form
of a derivational constraint.

Rutgers U. | 2019/11/22 J. Heinz | 22

Resolving Issue #2: What would OT say?

*Syllable,*Complex � Max-V

(Prince and Smolensky 1993, 2004, Zoll 1993, 1996, deLacy
1999, Gouskova 2003)

Rutgers U. | 2019/11/22 J. Heinz | 23

Resolving Issue #2: Factoring transducer T

T = T1 ◦ T2
where

• T1 is a transducer which optionally deletes vowels.

• T2 is a phonotactic constraint on complex syllable margins.

Rutgers U. | 2019/11/22 J. Heinz | 24

Resolving Issue #2: Factoring transducer T

T = T1 ◦ T2
where

• T1 is a transducer which optionally deletes vowels.

• T2 is a phonotactic constraint on complex syllable margins.

Both T1 and T2 can be learned from examples!

Rutgers U. | 2019/11/22 J. Heinz | 24

Part IV

Learning Deterministic Optional Processes

Rutgers U. | 2019/11/22 J. Heinz | 25

Resolving Issue #2: Learning T2

• The constraint *Complex is a Strictly 3-Local constraint
and can be learned by any SL3 learner.

(Garcia et al. 1990, Heinz 2007, et seq., Chandlee et al. 2019)

• On outputs like those shown above, these algorithms return
*Complex constraint by forbidding these substrings:

{ccc, occ, ccn}

Rutgers U. | 2019/11/22 J. Heinz | 26

Resolving Issue #2: Learning T2

• The constraint *Complex is a Strictly 3-Local constraint
and can be learned by any SL3 learner.

(Garcia et al. 1990, Heinz 2007, et seq., Chandlee et al. 2019)

• On outputs like those shown above, these algorithms return
*Complex constraint by forbidding these substrings:

{ccc, occ, ccn}

Rutgers U. | 2019/11/22 J. Heinz | 26

Onwardness

• Recall Beros and de la Higuera used
pairwise-incomparability to reveal canonical forms for
deterministic functions with finite stringsets on the output
transitions.

• One way to define a canonical form for deterministic
transducers is to require outputs be produced as early as
possible. This has been called ‘onwardness’ (Oncina et al.
1993).

Rutgers U. | 2019/11/22 J. Heinz | 27

Onwardness

• Recall Beros and de la Higuera used
pairwise-incomparability to reveal canonical forms for
deterministic functions with finite stringsets on the output
transitions.

• One way to define a canonical form for deterministic
transducers is to require outputs be produced as early as
possible. This has been called ‘onwardness’ (Oncina et al.
1993).

Not Onward

1 2 3 4 5 6 7

8 9

c:c v:v c:c v:v

c:c

c:c v:v

v:v

Rutgers U. | 2019/11/22 J. Heinz | 27

Onwardness

• Recall Beros and de la Higuera used
pairwise-incomparability to reveal canonical forms for
deterministic functions with finite stringsets on the output
transitions.

• One way to define a canonical form for deterministic
transducers is to require outputs be produced as early as
possible. This has been called ‘onwardness’ (Oncina et al.
1993).

Not Onward

1 2 3 4 5 6 7

8 9

c:λ v:λ c:λ v:λ

c:λ

c:λ v:cvcvcv

v:cvccv

Rutgers U. | 2019/11/22 J. Heinz | 27

Onwardness

• Recall Beros and de la Higuera used
pairwise-incomparability to reveal canonical forms for
deterministic functions with finite stringsets on the output
transitions.

• One way to define a canonical form for deterministic
transducers is to require outputs be produced as early as
possible. This has been called ‘onwardness’ (Oncina et al.
1993).

Onward!!!

1 2 3 4 5 6 7

8 9

c:cvc v:λ c:λ v:vcv

c:cv

c:λ v:λ

v:λ

Rutgers U. | 2019/11/22 J. Heinz | 27

Onwardness for String Transducers

• The longest common prefix is used to make string
transducers onward.

lcp
({

c v c v c v
c v c c v

})
= cvc

• We strip off the lcp of the other strings to get the
remainder.

(cvc)−1
{
c v c v c v
c v c c v

}
=

{
v c v
c v

}
• The same idea is used in Jardine et al. for learning:

For q
a:�−−→ q′ : � = lcp(wqΣ

∗)−1lcp(waΣ∗)

Rutgers U. | 2019/11/22 J. Heinz | 28

Onwardness for String Transducers

• The longest common prefix is used to make string
transducers onward.

lcp
({

c v c v c v
c v c c v

})
= cvc

• We strip off the lcp of the other strings to get the
remainder.

(cvc)−1
{
c v c v c v
c v c c v

}
=

{
v c v
c v

}

• The same idea is used in Jardine et al. for learning:

For q
a:�−−→ q′ : � = lcp(wqΣ

∗)−1lcp(waΣ∗)

Rutgers U. | 2019/11/22 J. Heinz | 28

Onwardness for String Transducers

• The longest common prefix is used to make string
transducers onward.

lcp
({

c v c v c v
c v c c v

})
= cvc

• We strip off the lcp of the other strings to get the
remainder.

(cvc)−1
{
c v c v c v
c v c c v

}
=

{
v c v
c v

}

• The same idea is used in Jardine et al. for learning:

For q
a:�−−→ q′ : � = lcp(wqΣ

∗)−1lcp(waΣ∗)

Rutgers U. | 2019/11/22 J. Heinz | 28

Onwardness for Finite Stringset Transducers
• The maximal-length, pairwise-incomparable shared

prefixes are used to make finite stringset transducers
onward.

•
For q

a:�−−→ q′,� = mlpisp(wqΣ
∗)−1mlpisp(waΣ∗)

(pics: Beros and de la Higuera 2016)
Rutgers U. | 2019/11/22 J. Heinz | 29

Onwardness for Finite Stringset Transducers
• The maximal-length, pairwise-incomparable shared

prefixes are used to make finite stringset transducers
onward.

•
For q

a:�−−→ q′,� = mlpisp(wqΣ
∗)−1mlpisp(waΣ∗)

(pics: Beros and de la Higuera 2016)Rutgers U. | 2019/11/22 J. Heinz | 29

Resolving Issue #2: Learning T1

Strategy: Learn an Input-based function anyway and
filter the outputs with phonotactic constraints (T2).

Input Strictly Local Transducer with 4-size window

λstart c cv

cvc vcv

nc:� v:�

c:�

n:�

v:�

c:�

n : �

Before Learning

Rutgers U. | 2019/11/22 J. Heinz | 30

Resolving Issue #2: Learning T1

1 Push stringsets forward to output to ensure onwardness.

2 Push stringsets back to ensure pairwise incomparability.

Input Strictly Local Transducer with 4-size window

λstart c cv

cvc vcv

n
c:{cv} v:{λ}

c:{c}

n:{λ}

v:{λ}

c:{c,vc}

n : {v, λ}

After Learning

Rutgers U. | 2019/11/22 J. Heinz | 30

Part V

Summary (The End)

Rutgers U. | 2019/11/22 J. Heinz | 31

Conclusion

1 Optional processes can be deterministic.
(Multi-valued 6→ non-deterministic.)

2 Non-decomposed, output-oriented, optional processes are
non-deterministic.

3 But they can be factored into a deterministic process which
overgenerates and a constraint which filters out the
unwanted overgenerates.

T = T1 ◦ T2

4 T2 can be learned with existing grammatical inference
methods.

5 T1 appears to be learnable with a synthesis of recent results
in grammatical inference.

Rutgers U. | 2019/11/22 J. Heinz | 32

Conclusion

1 Optional processes can be deterministic.
(Multi-valued 6→ non-deterministic.)

2 Non-decomposed, output-oriented, optional processes are
non-deterministic.

3 But they can be factored into a deterministic process which
overgenerates and a constraint which filters out the
unwanted overgenerates.

T = T1 ◦ T2

4 T2 can be learned with existing grammatical inference
methods.

5 T1 appears to be learnable with a synthesis of recent results
in grammatical inference.

Rutgers U. | 2019/11/22 J. Heinz | 32

Conclusion

1 Optional processes can be deterministic.
(Multi-valued 6→ non-deterministic.)

2 Non-decomposed, output-oriented, optional processes are
non-deterministic.

3 But they can be factored into a deterministic process which
overgenerates and a constraint which filters out the
unwanted overgenerates.

T = T1 ◦ T2

4 T2 can be learned with existing grammatical inference
methods.

5 T1 appears to be learnable with a synthesis of recent results
in grammatical inference.

Rutgers U. | 2019/11/22 J. Heinz | 32

Conclusion

1 Optional processes can be deterministic.
(Multi-valued 6→ non-deterministic.)

2 Non-decomposed, output-oriented, optional processes are
non-deterministic.

3 But they can be factored into a deterministic process which
overgenerates and a constraint which filters out the
unwanted overgenerates.

T = T1 ◦ T2

4 T2 can be learned with existing grammatical inference
methods.

5 T1 appears to be learnable with a synthesis of recent results
in grammatical inference.

Rutgers U. | 2019/11/22 J. Heinz | 32

Conclusion

1 Optional processes can be deterministic.
(Multi-valued 6→ non-deterministic.)

2 Non-decomposed, output-oriented, optional processes are
non-deterministic.

3 But they can be factored into a deterministic process which
overgenerates and a constraint which filters out the
unwanted overgenerates.

T = T1 ◦ T2

4 T2 can be learned with existing grammatical inference
methods.

5 T1 appears to be learnable with a synthesis of recent results
in grammatical inference.

Rutgers U. | 2019/11/22 J. Heinz | 32

Discussion

1 Formal proof of correctness of the algorithm for learning
classes of structured multi-valued functions is in progress.

2 Probabilities can be appended to the outputs for learning
classes of functions Σ∗ → P(FIN).

3 We hope to apply to other problems:

1 learning URs and phonological grammars simultaneously
2 sociolinguistic variation
3 NLP problems such as G2P, P2G, and so on.

Rutgers U. | 2019/11/22 J. Heinz | 33

Discussion

1 Formal proof of correctness of the algorithm for learning
classes of structured multi-valued functions is in progress.

2 Probabilities can be appended to the outputs for learning
classes of functions Σ∗ → P(FIN).

3 We hope to apply to other problems:

1 learning URs and phonological grammars simultaneously
2 sociolinguistic variation
3 NLP problems such as G2P, P2G, and so on.

Rutgers U. | 2019/11/22 J. Heinz | 33

Discussion

1 Formal proof of correctness of the algorithm for learning
classes of structured multi-valued functions is in progress.

2 Probabilities can be appended to the outputs for learning
classes of functions Σ∗ → P(FIN).

3 We hope to apply to other problems:

1 learning URs and phonological grammars simultaneously
2 sociolinguistic variation
3 NLP problems such as G2P, P2G, and so on.

Rutgers U. | 2019/11/22 J. Heinz | 33

Thank

You

Rutgers U. | 2019/11/22 J. Heinz | 34

