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Thesis

Far from being a fossil from a former era, mathematical
thinking about language

1 continues to play an essential role in understanding natural
languages and

2 continues to make critical contributions to our
understanding of how things which compute—both humans
and machines—can learn.

FLT · SCiL | 2020/01/05 J. Heinz | 2



Part I

What is mathematics?
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What is mathematics?

Marcus Kracht (Los Angeles circa 2005)

“It is a way of thinking.”

Eugenia Cheng How to Bake π (2015) : 8

“Math, like recipes, has both ingredients and method. . . . In
math, the method is probably even more important than the
ingredients.”
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Abstraction

Eugenia Cheng How to Bake π (2015) : 16/22

• “Math is there to make things simpler, by finding things
that look the same if you ignore some small details.”

• “Abstraction can appear to take you further and further
away from reality, but really you’re getting closer and
closer to the heart of the matter.”

Noam Chomsky The Minimalist Program (1995) : 6

“Idealization, it should be noted, is a misleading term for the
only reasonable way to approach a grasp of reality.”

I disagree with the word ‘only,’ but I do think abstraction is
underappreciated.
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Abstraction

image credit: https://computersciencewiki.org/index.php/Abstraction
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Abstraction

Many things were at one time considered to be “too abstract”:
0, real numbers,

√
−1, uncountable infinity, number theory, . . .

image credit: https://computersciencewiki.org/index.php/Abstraction
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Goals

Deducing consequences from premises.

Advantages:

1 Can provide complete, verifiable, interpretable &
understandable solutions to problems.

2 Can provide fresh insight into reality.

3 Truth is timeless.

realizationabstraction

Problem Solution

Complicated messy system
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Goals

Deducing consequences from premises.

Disadvantages:

1 The ‘abstraction’ and ‘realization’ steps take additional
work and time.

realizationabstraction

Problem Solution

Complicated messy system
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Part II

Overview of Rest of Talk

Mathematical Linguistics in the 21st Century
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Timeframe

• Of course much is owed to Boole and Frege of the 19th
century

• Of course much is owed to Russell, Church, Turing, Post,
the Polish school of Logic, and others

• Of course there are many others I omit (Montague, Bach,
Mönnich, Savitch, Johnson, . . . )

• I am going to focus on specific contributions in the latter
half of the 20th century which directly contributed to my
own interests.
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Linguistic Questions as Computational
Problems

What is it that we know when we know a language?

How do we come by this knowledge?

1 A Membership problem.

2 A Learning problem.

3 Variations thereof.
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Part III

Characterizing knowledge of language
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Conservativity (Keenan and Stavi 1986)

The theory of Generalized Quantifiers addresses determiner
expressions like

• every, all, some, not one, more than three, fewer than
twenty, most, how many, which, more male than female,
less than half, . . .

in utterances like

birds fly south for the winter.

1 What are the (possible) denotations of these expressions?

2 How arbitrary can they be?
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Conservativity (Keenan and Stavi 1986)

All birds fly south for the winter.

Denotation of all

• all P Q is true iff P⊆ Q

Conservativity

D is conservative iff D P Q = D P R whenever P∩Q = P∩R.

Informally, this means that in evaluating D P Q we ignore the
elements of Q which do not lie in P.

An example of non-conservative D:

• Härtig P Q is true iff |P| = |Q|
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Conservativity (Keenan and Stavi 1986)

Logically Possible Generalized Quantifiers

GQs satisfying

conservativity
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Mathematics of Sequences

• Language unfolds over time.

• We observe sequences of linguistic events.

• What is the mathematics of sequences?

• What is the mathematics of other relational structures like
trees and graphs?

Knowledge of language includes knowledge of which sequences
are licit and which are not.

• John laughed and laughed. X

• John and laughed. 7
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A Membership problem

M

yes no

s

Logically Possible Strings

S
s ∈ S s 6∈ S
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Variations thereof

Functions on the string domain . . .

Function Type Output Type

Σ∗ → {T, F} Booleans
Σ∗ → Σ∗ Strings
Σ∗ → N Natural Numbers
Σ∗ → [0, 1] Reals in the Unit Interval
Σ∗ → P (Σ∗) Stringsets
. . .

Mathematics classifies numerical functions according to
general properties: linear, polynomial, trigonometric,
logarithmic, . . .

How can we classify functions like those above?
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Classifying Membership Problems

Nowak et al. 2002, Nature
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Classifying Membership Problems

Nowak et al. 2002, Nature
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Where is natural language?

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

MSO

FO(prec)

FO(succ)

Prop(succ) Prop(prec)

CNL(succ) CNL(prec)

Finite

1 Morpho-phonology is regular (Johnson 1972, Kaplan and
Kay 1994, Roark and Sproat 2007, a.o.)

2 Syntax is mildly context sensitive (Joshi 1984, Schieber
1985, Joshi, Vijay-Shanker & Weir 1991, Stabler 1997, a.o.)
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From the 20th to the 21st Century
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Example #1: Stress Patterns
Rogers and Lambert (2019, JLM)

1 They consider over 100 distinct stress patterns, expressed
as regular grammars, from over 700 languages in the
StressTyp2 database.

2 They develop methods to factor these grammars into
primitive constraints. Almost all constraints fall into these
kinds:

1 Strictly Local (no LL)
2 Co-Strictly Local (require Ĺ)
3 Strictly Piecewise (no H́. . . L)
4 Co-Strictly Piecewise (require H́. . . L)

3 See also their 2019 MoL paper.
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Stress patterns are not just regular, they
belong to distinct sub-regular classes.

Regular Languages

Stress patterns satisfying

SL, coSL, SP, coSP constraints
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Example #2: Local and Long-distance string
transformations

Some facts

1 In phonology, both local and non-local assimilations occur
(post-nasal voicing, consonant harmony, . . . )

2 In syntax, both local and non-local dependencies exist
(selection, wh-movement, . . . )

3 There is also copying (reduplication). . .

Questions

1 What are (possible) phonological processes? Syntactic
dependencies?

2 How arbitrary can they be?
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What is Local?

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

MSO

FO(prec)

FO(succ)

Prop(succ) Prop(prec)

CNL(succ) CNL(prec)

Finite

1 The 20th century gave us local and long-distance dependencies
in (sets of) sequences

2 But it wasn’t until the 21st century that a theory of
Markovian/Strictly Local string-to-string functions was
developed (Chandlee 2014 et seq.)
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Input/Output Strictly Local Functions

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Chandlee 2014 et seq.
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u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Chandlee 2014 et seq.
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How much Phonology is in there?

Regular Functions

Input/Output Strictly Local Functions

Graf (2020, SCiL) extend this notion of locality to tree
functions to characterize subcategorization in syntactic structures
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What is Non-Local?

There are different types of long-distance dependencies overs
strings just like there are different types of non-linear numerical
functions.

1 Tier-based Strictly Local Functions (McMullin a.o.)

2 Strictly Piecewise Functions (Burness and McMullin, SCiL
2020)

3 Subsequential Functions (Mohri 1997 et seq.)

4 Subclasses of 2way FSTs (Dolatian and Heinz 2018 et seq.)

5 . . .
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Example #3: Parallels between
Syntax and Phonology

Non Regular

Regular

CNL(X) / QF(X)

(Appropriately Subregular)

strings

P

S

(Chomsky 1957, Johnson 1972, Kaplan and Kay 1994, Roark and

Sproat 2007, and many others)
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Example #3: Parallels between
Syntax and Phonology

Non Regular

Regular

CNL(X) / QF(X)

(Appropriately Subregular)

strings

S

P

(Potts and Pullum 2002, Heinz 2007 et seq., Graf 2010, Rogers et al.

2010, 2013, Rogers and Lambert, and many others)

FLT · SCiL | 2020/01/05 J. Heinz | 28



Example #3: Parallels between
Syntax and Phonology

Non Regular

Regular

CNL(X) / QF(X)

(Appropriately Subregular)

stringstrees

P

S

(Rogers 1994, 1998, Knight and Graehl 2005, Pullum 2007, Kobele

2011, Graf 2011 and many others)
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Example #3: Parallels between
Syntax and Phonology

Non Regular

Regular

CNL(X) / QF(X)

(Appropriately Subregular)

stringstrees

PS

(Graf 2013, 2017, Vu et al. 2019, Shafiei and Graf 2020, and others)
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Example #4: Other Applications

Understanding Neural Networks:

1 Merril (2019) analyzes the asymptotic behavior of RNNs in
terms of regular languages.

2 Rabusseau et al. (2019 AISTATS) proves 2nd-order RNNs
are equivalent to weighted finite-state machines.

3 Nelson et al. (2020) (SCiL) use Dolatian’s analysis of
reduplication with 2way finite-state transducers to better
understand what and how RNNs with and without
attention can learn.
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Summary of this Part

What is it that we know when we know a language?

1 Mathematical linguistics in the 20th century, and so far
into the 21st century, continues to give us essential insights
into (nearly) universal properties of natural languages.

2 This is accomplished by dividing the logically possible
space of generalizations into categories and studying where
the natural language generalizations occur.

3 The properties are not about a particular formalism (like
finite-state vs. regular expressions vs. rules vs. OT) but
more about conditions on grammars. What must/should
any grammar at least be sensitive to? What can/should be
ignored?

4 Because it’s math, it is verifiable, interpretable, analyzable
& understandable, and is thus used to understand
complicated systems (like natural languages and NNs).
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Part IV

Learning Problems
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Questions about learning

Motivating question

How do we come by our knowledge of language?

Questions about learning

1 What does it mean to learn?

2 How can learning be a formalized as a problem and solved
(like the problem of sorting lists)?
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Some answers from before the 21st century:
Computational Learning Theory

1 Identifications in the Limit (Gold 1967)

2 Active/Query Learning (Angluin 1988)

3 Probably Approximately Correct (PAC) Learning (Valiant
1984)

4 Optimizing Objective Functions

5 . . .
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In Pictures

algorithm
learning

A M

S

D

no

Is x in S?

yes

for any S belonging to a class C?

FLT · SCiL | 2020/01/05 J. Heinz | 34



Many, many methods

1 Connectionism/Associative Learning (Rosenblatt 1959,
McClelland and Rumelhart 1986, Kapatsinski 2018, a.o.)

2 Bayesian methods (Bishop 2006, Kemp and Tenenbaum
2008, a.o.)

3 Probabilistic Graphical Models (Pearl 1988, Koller and
Friedman 2010, a.o.)

4 State-merging (Feldman 1972, Angluin 1982, Oncina et al
1992, a.o.)

5 Statistical Relational Learning (De Raedt 2008, a.o.)

6 Minimum Description Length (Risannen 1978, Goldsmith
a.o..)

7 Suport Vector Machines (Vapnik 1995, 1998 a.o.)

8 . . .
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Many, many methods

Newer methods

1 Deep NNs (LeCun et al. 2015, Schmidhuber 2015,
Goodfellow et al. 2016, a. MANY o.)

• encoder-decoder networks
• generative adversarial networks
• . . .

2 Spectral Learning (Hsu et al 2009, Balle et al. 2012, 2014,
a.o.)

3 Distributional Learning (Clark and Yoshinaka 2016, a.o.)

4 . . .
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Computational Learning Theory

algorithm
learning

A M

S

D

no

Is x in S?

yes

CLT studies conditions on learning mechanisms/methods!
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The main lesson from CLT

There is no free lunch.

1 There is no algorithm that can feasibly learn any pattern
P, even with lots of data from P.

2 But—There are algorithms that can feasibly learn patterns
which belong to a suitably structured class C.

Gold 1967, Angluin 1980, Valiant 1984,
Wolpert and McReady 1997, a.o.
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The Perpetual Motion Machine

October 1920 issue of Popular
Science magazine, on perpetual
motion.

“Although scientists have estab-
lished them to be impossible un-
der the laws of physics, perpet-
ual motion continues to capture
the imagination of inventors.”

https://en.wikipedia.org/

wiki/Perpetual_motion
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The Perpetual Misconception Machine

∃machine-learning algorithm A, ∀ patterns P with enough data
D from P : A(D) ≈ P .

1 It’s just not true.

2 What is true is this:
∀ patterns P , ∃ data D and ML A : A(D) ≈ P .

3 In practice, the misconception means searching for A and D
so that your approximation is better than everyone else’s.

4 With next pattern P ′, we will have no guarantee A will
work, we will have to search again.
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Computational Laws of Learning

Feasibly solving a learning problem requires defining a target
class C of patterns.

1 The class C cannot be all patterns, or even all computable
patterns.

2 Class C must have more structure, and many logically
possible patterns must be outside of C.

3 There is no avoiding prior knowledge.

4 Do not “confuse ignorance of biases with absence of
biases.” (Rawski and Heinz 2019)
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In Pictures: Given ML algorithm A

All patterns

p1 p2

C

p2

D1 from p1 D2 from p2

A(D1)
A(D2)
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The Perpetual Misconception Machine

When you believe in things that you don’t understand
then you suffer.

– Stevie Wonder
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Go smaller, not bigger!

All patterns

C
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Dana Angluin

1 Characterized those classes identifiable in the Limit from
Positive Data (1980).

2 Introduced first non-trivial infinite class of languages
identifiable in the limit from positive data with an efficient
algorithm (1982).

3 Introduced Query Learning; Problem and Solution
(1987a,b).

4 Studied learning with noise, from stochastic examples
(1988a,b).
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Grammatical Inference

ICGI 2020 in NYC August 26-28!!
https://grammarlearning.org/

FLT · SCiL | 2020/01/05 J. Heinz | 45

https://grammarlearning.org/


From the 20th to the 21st Century
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Example #1: SL, SP, TSL; ISL, OSL, I-TSL,
O-TSL

1 These classes are parameterized by a window size k.

2 The k-classes are efficiently learnable from positive
examples under multiple paradigms.

(Garcia et al. 1991, Heinz 2007 et seq., Chandlee et al. 2014,
2015, Jardine and McMullin 2017, Burness and McMullin 2019
a.o.)
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Example #2: Other Applications

1 Using Grammatical Inference to understand Neural
Networks.

1 Weiss et al. (2018, 2019) use Angluin’s L* (1987) algorithm
(and more) to model behavior of trained NNs with FSMs.

2 Eyraud et al. (2018) use spectral learning to model
behavior of trained NNs with FSMs.

2 Model checking, software verification, integration into
robotic planning and control, and so on.
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Example #2: ISL Optionality

• For a given k, the k-ISL class of functions is identifiable in
the limit in linear time and data.

• Functions are single-valued, no?

• So what about optionality which is rife in natural
languages?

(work in progress with Kiran Eiden and Eric Schieferstein)
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Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Non-deterministic)

1start 2

n:n
p:p

a:a

p:p

p:b

a:a

n:n
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Optional Post-nasal Voicing
(Non-deterministic)

1start 2

n:n
p:p

a:a

p:p

p:b

a:a

n:n

/ a n p a /

1 1 2
1 1

1 1a n

p:p
a

p:b a
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Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Deterministic)

1start 2

n:{n}
p:{p}

a:{a}

p:{p,b}

a:{a}

n:{n}

Beros and de la Higuera (2016) call this ‘semi-determinism’.
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Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Deterministic)

1start 2

n:{n}
p:{p}

a:{a}

p:{p,b}

a:{a}

n:{n}

/ a n p a /

1 1 2 1 1
{a} {n} {p,b} {a}
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Deterministic FSTs with Language Monoids

Optional Post-nasal Voicing
(Deterministic)

1start 2

n:{n}
p:{p}

a:{a}

p:{p,b}

a:{a}

n:{n}

/ a n p a / 7→ {a} · {n} · {p, b} · {a} = {anpa, anba}
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Iterative Optionality is more challenging

Vaux 2008, p. 43
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Abstract Example

V → ∅ / VC CV (applying left-to-right)

/cvcv/ /cvcvcv/ /cvcvcvcv/ /cvcvcvcvcv/

cvcv cvcvcv cvcvcvcv cvcvcvcvcv faithful
cvccv cvccvcv cvccvcvcv 2nd vowel deletes

cvcvccv cvcvccvcv 3rd vowel deletes
cvccvccv 2nd, 4th vowels delete
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Problem: Output-oriented Optionality

1start

2

3 4

5

6

c:c

v:v

v:v

c:c

v:v

v:λ
c:c

v:v

• The output determines the state!

• 4 ??
v:{v,λ}

• For deterministic transducers, the next state is
necessarily determined by the input symbol!
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What would Kisseberth say?

Kisseberth 1970: 304-305

By making . . . rules meet two conditions (one relating to the
form of the input string and the other relating to the form
of the output string; one relating to a single rule, the other
relating to all the rules in the grammar), we are able to write
the vowel deletion rules in the intuitively correct fashion. We
do not have to mention in the rules themselves that they cannot
yield unpermitted clusters. We state this fact once in the form
of a derivational constraint.

FLT · SCiL | 2020/01/05 J. Heinz | 54



Learn the ISL function and surface
constraints independently and simultaneously

Strategy

Learn an Input-based function (T1) and filter the outputs with
phonotactic constraints (T2).

T1 ◦ T2 = target

FLT · SCiL | 2020/01/05 J. Heinz | 55



Learning the ISL function

• Algorithm synthesizes aspects of Jardine et al. (2014) and
Beros and de la Higuera (2016).

Before Learning

λstart c cv

cvc vcv

nc:� v:�

c:�

n:�

v:�

c:�

n : �

Input Strictly Local Transducer with 4-size window
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Learning the ISL function

• Learns to optionally delete every vowel except the 1st!!

After Learning

λstart c cv

cvc vcv

n
c:{cv} v:{λ}

c:{c}

n:{λ}

v:{λ}

c:{c,vc}

n : {v, λ}
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Summary of this example

1 Optional processes can be deterministic.
(Multi-valued 6→ non-deterministic.)
Deterministic String Relations

2 Non-decomposed, output-oriented, optional processes are
non-deterministic.

3 But they can be factored into a deterministic process which
overgenerates and a constraint which filters out the
unwanted overgenerates.

T = T1 ◦ T2

4 T2 can be learned with existing grammatical inference
methods.

5 T1 appears to be learnable with a synthesis of recent results
in grammatical inference.
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Discussion

1 Formal proof of correctness of the algorithm for learning
classes of structured multi-valued functions is in progress.

2 Probabilities can be appended to the outputs for learning
classes of functions.

3 We hope to apply to other problems:
1 learning URs and phonological grammars simultaneously
2 sociolinguistic variation
3 NLP problems such as G2P, P2G, and so on.

realizationabstraction

Problem Solution

Complicated messy system
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Part V

A Summary of Sorts
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Personal View

Two seeds in the 20th century

1 Mathematics can be developed to provide
stronger/tighter characterizations of natural language
patterns.

2 Computational Learning Theory stresses the importance
and necessity of structured hypothesis spaces. Don’t
treat them cavalierly!

These compatible ideas are bearing fruit well into the 21st
century.
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More 21st century Highlights

1 Abstract Categorial Grammars (De Groote 2001)

2 The Syntactic Concept Lattice (Clark 2013)

3 The Tolerance Principle (Yang 2016)

4 . . .
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Conclusion

1 Far from being a fossil from a former era, mathematical
thinking about language

1 continues to play an essential role in understanding natural
languages and

2 continues to make critical contributions to our
understanding of how things which compute—both humans
and machines—can learn.

realizationabstraction

Problem Solution

Complicated messy system
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The End

Thanks for listening, and thanks to everyone I have ever spoken
with: students, mentors and peers.

Let’s discuss more on the Outdex!

https://outde.xyz/
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