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This Minicourse

1 Finite Model Theory provides a unified language for
representing various linguistic structures.

2 Factors are “parts” of structures.

3 Grammars detail how a structure’s well-formedness is
based on its parts.

4 Too many distinctions hinders learning.
⇔ Fewer distinction facilitates learning.

5 The factors are partially ordered. This structure helps a lot!

6 Applications to phonotactic learning

7 Inductive vs. Abductive Learning
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Part I

Main Idea
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Compositionality

Hypothesis: The well-formedness of a complex
structure depends on its parts.

As a first approximation:

• We use sequences (strings) to model word structure.
• We use trees to model sentence structure.

How can these notions be formalized? What are the
consequences?
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Managing Expectations

• The examples will mostly come from phonology, but the
ideas are not specific to phonology.

• If the representations cannot be observed directly (like
syntactic trees) they will first have to be
inferred/parsed/obtained.
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Model-theoretic Representations for
Linguistic Structures

The 2017 SIGMOL S.-Y. Kuroda Prize is awarded to James Rogers
(Earlham College). James Rogers’s 1998 book, “A Descriptive Ap-
proach to Language-Theoretic Complexity,” was the first comprehensive
work to apply monadic second-order logic to the analysis of linguistic theo-
ries. . . http://molweb.org/mol/award-2017.html
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Model Theory for Linguistics

Pullum 2007:7, “The Evolution of Model-Theoretic Frameworks
in Linguistics”

I have tried to point out in the brief historical review
above, however, that the flowering of this work that
began in the middle 1990s was related to seeds planted
some thirty years before. They were planted in stony
ground, only inexpertly tended, and inadequately
watered, but they were planted nonetheless. There is
now an increasingly luxuriant garden to explore.

MIT | 2021/04/21-22 J. Heinz | 7



Model Theoretic Representations for Strings

M(w) :=
〈
Dw;Ri, σ

〉
σ∈Σ

where

• Dw is isomorphic to an initial segment 〈1, . . . , |w|〉 of the
nonzero natural numbers and represents the positions of w,

• each σ is a unary relation that holds for all and only those
positions at which σ occurs, and

• the remaining Ri are the other salient relations, which are
typically used to define how the positions are ordered
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Word Models: Conventional Successor

s á s à S á

〈D;C, s, S, á, à〉

MIT | 2021/04/21-22 J. Heinz | 9



Word Models: Conventional Precedence

s á s à S á

〈D;<, s, S, á, à〉
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Word Models: Tier-Based Successor

s á s à S á

〈D;C,C{s,S},C{à,á}, s, S, à, á〉
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Word Models: Feature-Based Successor

s á s à S á

〈D;C,+syll,−syll,+ant,−ant, H, L〉

−syll
+ant

+syll

H

−syll
+ant

+syll

L

−syll
−ant

+syll

H
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Word Models: Feature-Based Precedence

s á s à S á

〈D;<,+syll,−syll,+ant,−ant, H, L〉

−syll
+ant

+syll

H

−syll
+ant

+syll

L

−syll
−ant

+syll

H
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Other Word Models

1 Autosegmental structures (Jardine 2016, 2017)

2 Syllable structures (Strother-Garcia 2018, 2019)

3 Prosodic structures (Dolatian 2020)

4 Morphological structures (Dolatian 2020)

5 Articulatory Phonology structures (Chadwick 2020)
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Tree Models: Conventional Dominance &
Successor

ε

0

00 01

010 011

1

10 11

110 111

1110

112

〈D;C↓,C→, σ〉σ∈Σ

For models of trees, the domain is isomorphic to the Gorn
addresses (shown) of the nodes in the tree.

(Rogers 1998, Frank and Vijay-Shanker 2001)
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Summary

Finite model theory provides a unified ontology and a
vocabulary for representing many kinds of objects, by
considering them as relational structures (see Libkin
2004 for a thorough introduction). This allows flexible
but precise definitions of the structural information in
an object, by explicitly defining its parts and the
relations between them. This makes model-theoretic
representations a powerful tool for analyzing the
information characterizing a certain structure.

(Lambert, Heinz and Rawski, under review)
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Part II

Factoring Structures
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Factors

• We call the “parts” of a relational structure its “factors.”

• Informally, factors are connected pieces of structure (so
domain elements connected by the relations).

• The size of a factor is its number of elements.

• If A is a factor of B, we write A ≤ B.
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Some Example Factors

s á s à S á

〈D;C, s, S, á, à〉

á s à

Factors are substrings!
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Some Example Factors

s á s à S á

〈D;<, s, S, á, à〉

s S

Factors are subsequences!
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Some Example Factors

s á s à S á

〈D;C,C{s,S},C{à,á}, s, S, à, á〉

s s S á à á

Factors are substrings on tiers!
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Some Example Factors

s á s à S á

〈D;C,+syll,−syll,+ant,−ant, H, L〉

−syll
+ant

+syll

H

−syll
+ant

+syll

L

−syll
−ant

+syll

H

−syll +syll +syll −syll

Factors are substrings of feature bundles!
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Some Example Factors

s á s à S á

〈D;C,+syll,−syll,+ant,−ant, H, L〉

−syll
+ant

+syll

H

−syll
+ant

+syll

L

−syll
−ant

+syll

H

H +ant −syll L

Factors are substrings of feature bundles!

MIT | 2021/04/21-22 J. Heinz | 19



Some Example Factors

s á s à S á

〈D;C,+syll,−syll,+ant,−ant, H, L〉

−syll
+ant

+syll

H

−syll
+ant

+syll

L

−syll
−ant

+syll

H

H L

Factors are substrings of feature bundles!
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Gathering Factors

Given a model of a word M(w), its factors of size k are finite.

Fk(M(w)) := {m : m ≤M(w), |m| = k}

Even the set of all possible factors of size k is finite.

FACk :=
⋃
w∈Σ∗

Fk(M(w))

All possible factors of size k

Factors of size k of some model M(w)
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Part III

Some Factor-Based Grammars and Learning
Them
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Grammar (ideas)

If we have a well-formed structure, we can assume one of the
following.

1 One or more of its factors licenses it.

2 None of its factors are ill-formed.

3 The particular combination of its factors licenses the
structure.

4 The particular combination of its factors and their counts
(up to t) licenses the structure.

• Note (4) subsumes (3) which subsumes both (1) and (2).

• If the factor size is set to k (and for (4), a threshold set to
t), each of these ideas leads to “in principle” learnability.
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Formal Grammars
If we have a well-formed structure, we can assume one of the
following.

1 G is a set of licensing factors and G recognizes words whose
models include at least some factor in G.

2 G is a set of forbidden (marked) factors and G recognizes
words whose models’ factors are disjoint with G.

3 G is a collection of sets of factors and G recognizes words
whose models’ set of factors is in G.

4 G is a collection of saturated multisets of factors and G
recognizes words whose models’ saturated multiset of
factors is in G.

• Note (4) subsumes (3) which subsumes both (1) and (2).

• If factor size is set to k (and for (4), a threshold set to t),
each of these ideas leads to “in principle” learnability.
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Example for (1)

(1) G is a set of licensing factors and G recognizes words whose
models include at least some factor in G.

• Disyllabic minimal word condition.
G = { [+syll][+syll] }
with feature-based precedence (or tier) model and k = 2

All possible factors of size k

Factors of size k of some model M(w)

Grammar G

M(w) is accepted.
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Example for (2)

(2) G is a set of forbidden factors and G recognizes words
whose models’ factors are disjoint with G.

• CV language
G = { [+syll][+syll], [-syll][-syll] }
with feature-based successor model and k = 2

All possible factors of size k

Factors of size k of some model M(w)

Grammar G

M(w) is rejected.
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Example for (2)

(2) G is a set of forbidden factors and G recognizes words
whose models’ factors are disjoint with G.

• CV language
G = { [+syll][+syll], [-syll][-syll] }
with feature-based successor model and k = 2

All possible factors of size k

Factors of size k of some model M(w)

Grammar G

M(w) is rejected.

Most markedness constraints in phonology are here!!
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Example for (2) continued

An equivalent way of thinking of these constraints is as follows.

(2) G is a set of permissible factors and G recognizes words
whose models’ factors all belong to G.

• CV language
G = { [+syll][-syll], [-syll][+syll] }
with feature-based successor model and k = 2

All possible factors of size k

Factors of size k of some model M(w)

Grammar G

M(w) is accepted.
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Example for (3)

(3) G is a collection of sets of factors and G recognizes words
whose models’ set of factors is in G.

• Words must contain both [s] and [S].
G = {S : {s, S} ∈ S}
with conventional successor model and k = 1

Powerset of all possible
factors of size k

Set of factors of size k
of some model M(w)

Grammar G

M(w) is accepted.
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Example for (4)

(4) G is a collection multisets of factors and G recognizes
words models’ multiset of factors is in G.

• Words must contain at least 3 CC substrings.
G = { S : { ( [-syll][-syll], 3) } ∈ S }
with feature-based successor model and k = 2 and t = 3

Power-multiset of all possible
factors of size k (saturating at t)

Multiset of factors of size k
(saturating at t) of some model M(w)

Grammar G

M(w) is accepted.
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Classes of Formal Languages Obtained from
Different Models with Different Grammars

Locally
Threshold
Testable

Tier-Based
Locally

Threshold
Testable

Multi-Tier
Locally

Threshold
Testable

Piecewise
Testable

Locally
Testable

Tier-Based
Locally
Testable

Multi-Tier
Locally
Testable

Strictly
Piecewise

Strictly
Local

Tier-Based
Strictly
Local

Multi-Tier
Strictly
Local

Complement
Strictly

Piecewise

Complement
Strictly
Local

Complement
Tier-Based

Strictly
Local

Complement
Multi-Tier

Strictly
Local

< C Cτ {Cτ}

(IV)
Saturating

Multisets
of Factors

(III)
Sets of
Factors

(II)
All

Factors

(I)
Certain
Factors

Star-Free

Regular
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Doing Linguistic Typology

Requires two books:

• “encyclopedia of categories”

• “encyclopedia of types”

Wilhelm Von
Humboldt
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Evidence from Stress Patterns
Rogers and Lambert 2019

1 They consider over 100 distinct stress patterns, expressed
as regular grammars, from over 700 languages in the
StressTyp2 database.

2 They develop methods to factor these grammars into
primitive constraints. Virtually all constraints fall into
these kinds:

1 Class I with {C} (no LL)
2 Class II with {C} (require Ĺ)
3 Class I with {<} (no H́. . . L)
4 Class II with {<} (require H́. . . L)
5 Class I with {<,C} (no H. . . H́n)

3 See also their 2019 MoL paper.
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Part IV

Learning these Grammars from Examples
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Learning These Grammars from Examples

Learning Algorithms:

• G0 := ∅
• Gi+1 := Gi ∪ f(M(w))

where

1 f(M(w)) := M(w) iff M(w) ≤ k and ∅ otherwise

2 f(M(w)) := Fk(M(w)) *

3 f(M(w)) := {Fk(M(w))}
4 f(M(w)) := HFk(M(w))It

The notation H. . .It represents a multiset that saturates at a
count of t.

*Learns the permissible version of the grammar.
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Feasibility: Time and Space Complexity
Conventional model analysis (no features)

• Let n be the size of the input data.
• |Σ|, k, t are fixed in advance are so are constants.

Algorithm Time*** Space

I polynomial in n constant*
II polynomial in n constant*

III polynomial in n constant**
IV polynomial in n constant**

* This constant is singly exponential in k: O(|Σ|k).

** This constant is doubly exponential in k: O((t+ 1)|Σ|k).

*** Time complexity depends on the model and some additional
choices. I and II are linear with certain optimizations but
polynomial without them for some models. These optimizations
are not available for III and IV.
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Feasibility: Space Complexity

5 10 15

10100.2

10100.4

10100.6

10100.8

10101.0

10101.2

Factor Width

Space Requirements for Learning

Factors
Sets
Saturating Multisets, t = 2
Saturating Multisets, t = 3
Synapses in a Human

For |Σ| = 2
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Feasibility: Space Complexity

Locally
Threshold
Testable

Tier-Based
Locally

Threshold
Testable

Multi-Tier
Locally

Threshold
Testable

Piecewise
Testable

Locally
Testable

Tier-Based
Locally
Testable

Multi-Tier
Locally
Testable

Strictly
Piecewise

Strictly
Local

Tier-Based
Strictly
Local

Multi-Tier
Strictly
Local

Complement
Strictly

Piecewise

Complement
Strictly
Local

Complement
Tier-Based

Strictly
Local

Complement
Multi-Tier

Strictly
Local

< C Cτ {Cτ}

(IV)
Saturating

Multisets
of Factors

(III)
Sets of
Factors

(II)
All

Factors

(I)
Certain
Factors

Star-Free

Regular
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Part V

What about Phonological Features?
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What About Features?

• With n features, we can potentially distinguish 2n symbols
in a conventional model.

• So the space constants becomes even worse with
feature-based models because |Σ| is effectively larger.

The Selection Problem (Hayes and Wilson 2008:390)

. . . one still faces a formidable difficulty: the fact that
an enormous number of distributional generalizations
are consistent with any given set of surface forms.
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Hayes and Wilson 2008

To solve the selection problem, we assume that UG
determines the feature inventory and the format of
constraints, yielding a search space that is quite large
and hence compatible with the inductive baseline
approach. Nevertheless, in our experience it is
effectively searchable, provided the right search
heuristics are used.
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Wilson and Gallagher 2018

What about . . . a nonstatistical model . . . that learns by
memorizing feature sequences . . . ? The immediate
problem confronting such a model is that any given
segment sequence has multiple different featural
representations.
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Wilson and Gallagher 2018

For example, the attested dorsal-tier trigram [oqa]
could be represented

• with very general classes
(e.g., [+syll][−syll] [+syll] = VCV),

• with maximally specific classes
(i.e., [+syll, −high, −low, +back][−cont, −son,
+dorsal, −high, −cg][+syll, −high, +low] =
[oqa]),

• or at intermediate levels of granularity
(e.g., [ + syll, −high, −low][ − cont, −son,
+dorsal, −high][ + syll, −high, +low] = EQA).
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Wilson and Gallagher 2018

If a hypothetical [model] judged a substring to be legal
as long as it satisfied any attested featural description,
it would tolerate (among other structures) every VCV
trigram and thus massively overgeneralize. If the
model instead required all feature representations of a
substring to be attested, it would be equivalent to
[memorizing segmental trigrams] . . . Lacking a method
for deciding which representations are relevant for
assessing well-formedness—precisely the role played by
statistics [here]—learning . . . is doomed.

(emphasis added)
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Part VI

Bottom Up Factor Learning
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Bottom-Up Factor Inference Algorithm
Chandlee et al. 2019

Theorem

Given a finite positive data sample D, BUFIA finds a constraint
grammar G such that:

1 G is consistent, i.e. it covers the data:
• D ⊆ L(G)

2 L(G) is the smallest language in the class L which covers
the data

• for all L ∈ L where D ⊆ L, L(G) ⊆ L
3 the largest forbidden factor is of size k

4 G includes the most general factors m of any other
grammars G′ that also satisfy (1,2,3)

• for all m′ ∈ G′, there exists m ∈ G such that m ≤m′.
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Forbidden Factor Grammars

(2) G is a set of forbidden factors and G recognizes words
whose models’ factors are disjoint with G.

• CV language
G = { [+syll][+syll], [-syll][-syll] }
with feature-based successor model and k = 2

All possible factors of size k

Factors of size k of some model M(w)

Grammar G

M(w) is rejected.

BUFIA finds forbidden factors.
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Foreshadowing

1 So Chandlee et al. 2019 provide a non-statistical method
“for deciding which representations are relevant for
assessing well-formedness.”

2 However, the grammar obtained is redundant in a way I
will make clear.

3 This is an under-appreciated fact faced by all phonotactic
learner which use features.

4 This necessitates the need for clear abductive principles for
determining which constraints are in the grammar.
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What is Abduction?

• Abduction is inference to the best explanation.

• Many hypotheses are empirically equivalent.

• Abductive principles tell us which to select (cf. the
Selection Problem).

• Abductive principles typically invoke concepts of simplicity
and generality.

(Haig 2018)
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Examples of Abductive Principles in Action

Hayes and Wilson 2008, 4.2.2:

• “First, shorter constraints (fewer matrices) are treated as
more general than longer ones.”

• “. . . we suggest that the value of a constraint is proportional
to the number of segments contained in its classes, and our
metric sorts constraints of a given length on this basis.”

BUFIA also

• prefers more general constraints using the structure of
factor space.

• orders features to sort same-length constraints but does so
intrinsically as opposed to extensionally
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Part VII

Ordering Factors
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Ordering Factors

The set of possible factors forms a partial order.

A ≤ B iff B contains A as a factor.

All possible factors of size k
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Ordering Factors

The set of possible factors forms a partial order.

A ≤ B iff B contains A as a factor.

Unique factor of size 0
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Factor Space

Unique factor of size 0
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Factor Space

Unique factor of size 0

Factors of size 1
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Factor Space

Unique factor of size 0

Factors of size 1

Factors of size 2
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Factor Space

.

.

.

Unique factor of size 0

Factors of size 1

Factors of size 2

Factors of size k
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Partially Ordered Factors

GFE

CB D

A

More specific factors are higher up
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Partially Ordered Factors

GFE

CB D

A

“is a factor of”

A ≤ B, C, D, E, F, G
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Partially Ordered Factors

GFE

CB D

A

“is a factor of”

B ≤ E, F
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Partially Ordered Factors

GFE

CB D

A

“is a factor of”

C ≤ E, F, G
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Partially Ordered Factors

GFE

CB D

A

“are incomparable”

B ∼ C, D

MIT | 2021/04/21-22 J. Heinz | 49



Partially Ordered Factors

GFE

CB D

A

“are incomparable”

F ∼ E, G
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Partially Ordered Factors

GFE

CB D

A

“is a superfactor of”

B, C, D ≥ A
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Partially Ordered Factors

GFE

CB D

A

“is a superfactor of”

E ≥ B, C, A
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Partially Ordered Factors

GFE

CB D

A

“is a superfactor of”

G ≥ C, D, A
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Partially Ordered Factors

GFE

CB D

A

“is a successive superfactor of”

B, C, D B A
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Partially Ordered Factors

GFE

CB D

A

“is a successive superfactor of”

E, F, G B C
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Partially Ordered Factors

GFE

CB D

A

“is a successive superfactor of”

G B C, D
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Example: Sibilant Harmony with precedence
(<)

[]

. . . . . . . . .

. . .

[+str
+ant

]
[+str]

. . .

[+str
+ant

] [+str
+ant

] [+str
+ant

] [
+str
-ant

]

+voi
+str
+ant

[+str
+ant

] [
+str
+ant

] [+voi
+str
-ant

] [+voi
+str
+ant

] [
+str
-ant

]
. . . . . . . . .

. . .
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Inference via Factors

GFE

CB D

A

• If factor G is is permissible, we can conclude all of its
factors are too.

• If factor C is forbidden, we can conclude all of its
superfactors are too.
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Inference via Factors

GFE

CB D

A

• If factor G is is permissible, we can conclude all of its
factors are too.

• If factor C is forbidden, we can conclude all of its
superfactors are too.
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Inference via Factors

GFE

CB D

A

• If factor G is is permissible, we can conclude all of its
factors are too.

• If factor C is forbidden, we can conclude all of its
superfactors are too.
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Example: Sibilant Harmony with precedence
(<)

[]

. . . . . . . . .

. . .

[+str
+ant

]
[+str]

. . .

[+str
+ant

] [+str
+ant

] [+str
+ant

] [
+str
-ant

]

+voi
+str
+ant

[+str
+ant

] [
+str
+ant

] [+voi
+str
-ant

] [+voi
+str
+ant

] [
+str
-ant

]
. . . . . . . . .

. . .

X X

X

X

X

X

X

X X

X X

X
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Part VIII

How BUFIA works and Discussion
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Bottom-Up Traversal of Factor Space

1 Put the most general factor (the one at the bottom) on the
Queue.

2 Take a factor C from the Queue and check whether it is
present in the observed data.

3 If so, discard it and add its successive superfactors which
are not blocklisted to the Queue.

4 If not, add C to the grammar G as a constraint, remove all
its superfactors from the Queue and blocklist them.

5 Repeat from step 2.
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Step 2: Is a factor forbidden? It it added as
a constraint to the grammar?)

.

.

.

Unique factor of size 0

Factors of size 1

Factors of size 2

Factors of size k
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Step 2: Is a factor forbidden? It it added as
a constraint to the grammar?)

observed unobserved
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C

If C is a factor of the observed data, then conclude C is not
forbidden.
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observed unobserved

C

If C is a factor of the observed data, then conclude C is not
forbidden.
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Step 2: Is a factor forbidden? It it added as
a constraint to the grammar?)

observed unobserved

C

If the observed data does not include C as a factor, then
conclude C is forbidden. All superfactors of C can henceforth
be ignored!
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Proceed Bottom-Up in this way
(Visualization)
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Some Results

Hayes and Wilson’s CMU initial cluster data

• 469 forbidden factors with size up to 2 (feature-based
successor model)
e.g. [+nasal][+dorsal]

Gallagher’s Quechua roots (p.c.)

• 1913 forbidden factors with size up to 2 (feature-based
successor model)
e.g. [+syllabic][+syllabic]

• 320 forbidden factors with size up to 2 (feature-based
precedence model)
e.g. [+cg][+cg]

The forbidden factors in these sets are pairwise incomparable!
Why so many?
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Redundancy in the grammar
The fact that there are so many feature combinations means
many incomparable constraints are “accomplishing the same
thing.”

observed unobserved

G

C

The extension of C is already covered by G.

(Haig 2018)
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What are we doing?

1 We assume observed factors are permissible.

2 We assume each unobserved factor warrants explanation.

3 The explanation we assume we seek is some constraint
forbidding it.

4 Once we have one explanation, do we need another?
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Here is as simple example illustrating what
happens.

i u e o a

high + + - - -
back - + - + -
low - - - - +

Learning Data: { ii, aa }
k = 2

Hayes and Wilson (MaxEnt)

[+back] 6.186
[-low, -high] 2.162
[-low][-high] 5.766
[-high][-low] 5.766
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Here is as simple example illustrating what
happens.

i u e o a

high + + - - -
back - + - + -
low - - - - +

Learning Data: { ii, aa }
k = 2

Chandlee et al. (BUFIA)

[+back] [-high][-low]
[-high, -low] [+low][+high]
[+high][-high] [+low][-low]
[+high][+low] [-low][-high]
[-high][+high] [-low][+low]
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Candidate Abductive Principles

observed unobserved

G

C

MIT | 2021/04/21-22 J. Heinz | 61



Candidate Abductive Principles

observed unobserved

G

C

Principle 1: Add C to G only if C accounts for any unobserved
factors that are not superfactors of G
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Candidate Abductive Principles

observed unobserved

G

C

Principle 2: Add C to G only if all the unobserved factors C
accounts for are not superfactors of G.
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Candidate Abductive Principles

observed unobserved

G

C

The “gain” in Wilson and Gallagher 2018 is a statistical
abductive principle that also navigates these issues.
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Adding Abductive Principles to BUFIA

i u e o a

high + + - - -
back - + - + -
low - - - - +

Learning Data: { ii, aa }

Chandlee et al. (BUFIA + P1)

[+back]
[-high, -low]
[+high][-high]
[-high][+high]
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Adding Abductive Principles to BUFIA

i u e o a

high + + - - -
back - + - + -
low - - - - +

Learning Data: { ii, aa }

Chandlee et al. (BUFIA + P2)

[+back]
[-back][-back, -high, -low]
[+low][-back, +high]
[-back, +high][+low]
[-back, -high, -low][+low]
[-back, -high, -low][-back, +high]
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Inductive vs Abductive Principles

• The structure of the constraint space lets us induce
general, incomparable constraints that are surface true
(without statistics) up to some size.

• Abductive principles are used to determine which of these
constraints ought to make up the grammar (what the best
explanations are).

• In this way, we can understand exactly why the grammar
we learn is what it is.

• This is not about statistics vs. structure: it is about
understanding the different roles and contributions each
can play with respect to the problems of induction and
abduction.
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English and Quechua again, BUFIA + P1

Hayes and Wilson’s CMU initial cluster data

• 469 → 32
forbidden factors with size up to 2
(feature-based successor model)

Gallagher’s Quechua roots (p.c.)

• 1913 → 89
forbidden factors with size up to 2
(feature-based successor model)

• 320 → 22
forbidden factors with size up to 2
(feature-based precedence model)

MIT | 2021/04/21-22 J. Heinz | 64



Part IX

Conclusion
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Current/Future Work

• Run BUFIA with different abductive principles on different
corpora.

• Whenever possible, examine learned grammars with
speaker judgments and compare with other phonotactic
learning models (Durvasula 2020, AMP)

• Explore constraint learning with BUFIA with other kinds
of representations (autosegmental, syllable structure, . . . )

• Combine BUFIA with a syntactic parser for learning
constraints on syntactic trees.
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Minicourse Summary – THANKS!

1 Finite Model Theory provides a unified language for
representing various linguistic structures.

2 Factors are “parts” of structures.

3 Grammars detail how a structure’s well-formedness is
based on its parts.

4 Grammars and representations together gives us an
encyclopedia of categories of constraint types.

5 The feasibly learnable constraint types are the simpler ones
which make fewer distinctions.

6 At least in phonology, that’s where the markedness
constraints appear to be.

7 The factors are partially ordered. This structure helps
learning a lot!

8 It is important to be clear about both inductive and
abductive principles when studying language learning.
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