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Today

1 There are multiple extensionally equivalent ways to analyze
iterative spreading processes.

2 Most phonologists view them as output-oriented, local
processes partly because common-sense suggests such
analyses are constrained.

3 An alternative analysis posits they are akin to
long-distance harmony.

4 The algebraic analysis conducted here supports this latter
view in a constrained way.

5 Furthermore, computational analysis of output-oriented
processes indicates they are not as constrained as
common-sense would have us believe.
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Phonology:
A functional view
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Iterative Spreading

Johore Malay ‘supervision’

/pəŋawasan/ → [pəŋãw̃ãsan]

1 [−cons] → [+nas]/[+nas]__ (left-to-right application)

2 Agree(nasal)>>IdentIO[nasal].
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Phonological constraints and
transformations are infinite objects

Extensions of grammars in phonology are infinite objects in the
same way that circles represent infinitely many points.

Iterative Nasal Spreading: Intensional Descriptions

1 [−cons] → [+nas]/[+nas]__ (left-to-right application)

2 Agree(nasal)>>IdentIO[nasal].

Iterative Nasal Spreading: Extensional Description

(ane, anẽ), (ame, amẽ), (anewa, anẽw̃ã),
(apila, apila),…(mawisaŋawala, mãw̃ĩsaŋãw̃ãw̃ã), …
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Many ways to describe the same extensions

1 [−cons] → [+nas]/[+nas]__ (left-to-right application)

2 [−cons] → [+nas]/[+nas][−cons]∗__ (simultaneous application)
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Many ways to describe the same extensions

1 [−cons] → [+nas]/[+nas]__ (left-to-right application)

p ə ŋ a w a s a n

2 [−cons] → [+nas]/[+nas][−cons]∗__ (simultaneous application)

p ə ŋ a w a s a n
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Many ways to describe the same extensions

1 [−cons] → [+nas]/[+nas]__ (left-to-right application)

p ə ŋ a w a s a n

2 [−cons] → [+nas]/[+nas][−cons]∗__ (simultaneous application)

p ə ŋ a w a s a n

What kind of evidence could distinguish them?

SFL | 14.11.2023 Lambert & Heinz | 6



Grammars describe string functions

function Notes

f : Σ∗ → {0, 1} Binary classification (well-formedness)
f : Σ∗ → N Maps strings to numbers (well-formedness)
f : Σ∗ → [0, 1] Maps strings to real values (well-formedness)

f : Σ∗ → ∆∗ Maps strings to strings (transformation)
f : Σ∗ → ℘(∆∗) Maps strings to sets of strings (transformation)

What kind of functions are they?
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Background
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Research Goals

The computational nature of natural language
characterizes the computations involved in knowing and
learning natural languages. Its study spans all subdisciplines of
linguistics.

Hypotheses about the computational nature of language:

1 Make typological and psycholinguistic predictions
2 Leads to new learning algorithms
3 Inform Machine Learning, Natural Language Processing,

Cognitive Science, and other aspects of science and
engineering.
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Previously

It has been argued that the computational nature of
phonological generalizations is

1 “regular”, and in fact,

2 “less than” regular in a particularly “local” way

(Heinz, 2018; Graf, 2022, and others)

SFL | 14.11.2023 Lambert & Heinz | 10



Doing Linguistic Typology

Requires two books:
• “encyclopedia of categories”
• “encyclopedia of types”

Wilhelm Von
Humboldt
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An Encyclopedia of Categories

Computably Enumerable

Context-sensitive

Context-free

Regular

Finite

MSO

FO(prec)

FO(succ)

Prop(succ) Prop(prec)

CNL(succ) CNL(prec)

Finite
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Algebraic Perspective (Lambert 2022, 2023)
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studied previously
in mathematics and
computer science
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Lambert studied
tier-projections
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morpho-phonology
seems to be here?

SFL | 14.11.2023 Lambert & Heinz | 13



Algebraic Perspective (Lambert 2022, 2023)
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“Definite”
means local
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ISL, OSL, and Definite
Functions
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Input Strictly Local Functions
(Chandlee 2014)

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

The output at position i only depends on the ith symbol and
the previous k − 1 symbols in the input.
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Input Strictly Local Functions (con’t)

• Have good empirical coverage of local phonological and
morphological processes.

• Have efficient, interpretable and provably correct learning
algorithms (given k).

• Have multiple, equivalent characterizations and are directly
related to Strictly Local stringsets.

(Rogers and Pullum, 2011; Chandlee, 2014; Chandlee et al., 2014; Jardine et al.,
2014; Lindell and Chandlee, 2016; Chandlee, 2017; Chandlee and Heinz, 2018)
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Phonological Processes that are not ISL

1 Iterative Spreading (as in Johore Malay)

2 Long-distance vowel and consonant harmony

(Chandlee, 2014; Chandlee et al., 2015; McMullin, 2016; Chandlee and Heinz,
2018; Burness and McMullin, 2019; Burness et al., 2021)
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Phonological Processes that are not ISL

1 Iterative Spreading (as in Johore Malay)
Phonological view: local on the surface form

2 Long-distance vowel and consonant harmony
Phonological view: local on a tier-projection of the
surface form

(Chandlee, 2014; Chandlee et al., 2015; McMullin, 2016; Chandlee and Heinz,
2018; Burness and McMullin, 2019; Burness et al., 2021)
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Phonological Processes that are not ISL

1 Iterative Spreading (as in Johore Malay)
Phonological view: local on the surface form
Functional class: Output Strictly Local Functions

2 Long-distance vowel and consonant harmony
Phonological view: local on a tier-projection of the
surface form
Functional class: Tier-based Output Strictly Local
Functions

(Chandlee, 2014; Chandlee et al., 2015; McMullin, 2016; Chandlee and Heinz,
2018; Burness and McMullin, 2019; Burness et al., 2021)
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Output Strictly Local Functions

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

The output at position i only depends on the ith symbol and
the previous k − 1 symbols in the output (surface form).
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Post-nasal Voicing

/anta/ → [anda]

Minimal, Deterministic Finite-state Transducer

1 2

N:N
D:D

T:T

V:V

D:D
T:D
V:V

N:N

Symbol Interpretation

V vowel
N nasal consonant
T voiceless consonant
D non-nasal, voiced consonant
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Post-nasal Voicing

/anta/ → [anda]

Minimal, Deterministic Finite-state Transducer

1 2

N:N
D:D

T:T

V:V

D:D
T:D
V:V

N:N

Post-nasal voicing is both 2-ISL and 2-OSL because one can
determine the state by either the last input symbol or by the

last output symbol.
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Algebraic Analysis

1 2

N:N
D:D

T:T

V:V

D:D
T:D
V:V

N:N

There are two distinct actions that arise from the input letters.

T, D, V : 〈1, 2〉 7→ 〈1, 1〉
N : 〈1, 2〉 7→ 〈2, 2〉
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Algebraic Analysis (con’t)

1 2

N:N
D:D

T:T

V:V

D:D
T:D
V:V

N:N

We follow the states to build a multiplication table.

· V N

V V N
N V N
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Definite Functions

· V N

V V N
N V N

Definitions
1 An element x is an identity if and only if for all y, it holds that

x · y = y · x = y.

2 An element e is idempotent if and only if e = e · e.

3 A function is definite if and only if for all elements x, and all
idempotents e it holds that x · e = e.
(Visually, this means the idempotent elements “own” their
columns.)

Theorem: Definite functions are exactly the input
strictly local functions (Lambert and Heinz, 2023).
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What are OSL functions algebraically?
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=FO[<]

SFL | 14.11.2023 Lambert & Heinz | 23



What are OSL functions algebraically?

1
Σ∗ or ∅

JI
1-lt

Acom
〈1,𝑡〉-ltt

J
piecewise testable

L R

DA
fo2 [<]

MeJI
generalized locally testable

MeAcom

MeJ

MeL MeR

MeDA
fo2 [<,bet]

H
star-free

F
(co)finite

D
definite

K
rev. def.

L1
gen. def.

LJI
locally testable

LAcom
locally threshold testable

LJ

LL LR

LDA
fo2 [<,C]

ÈFÉT
tier (co)finite

ÈDÉT
tier def.

ÈKÉT
tier rev. def.

ÈL1ÉT
tier gen. def.

ÈLJIÉT
tier locally testable

ÈLAcomÉT
tier loc. thresh. testable

ÈLJÉT

ÈLLÉT ÈLRÉT

ÈLDAÉT
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OSL functions
can be found
in every class!
Lambert (2022)
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But
iterative spreading

is here
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and long-distance
harmony is here
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Algebraic Analysis of
Iterative Spreading
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Minimal, Deterministic Finite-state
Transducer

/pəŋawasan/ → [pəŋãw̃ãsan]

1 2

V:V

T:T

Ṽ:Ṽ
N:N V:Ṽ

Ṽ:Ṽ

N:N

T:T

Symbol Interpretation

V oral vowel or semivowel
Ṽ nasalized vowel or semivowel
N nasalized consonant
T any other symbol
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Identifying Basic Behaviors

1 2

V:V

T:T

Ṽ:Ṽ
N:N V:Ṽ

Ṽ:Ṽ

N:N

T:T

There are three distinct actions that arise from the letters.

V : 〈1, 2〉 7→ 〈1, 2〉
T : 〈1, 2〉 7→ 〈1, 1〉

Ṽ, N : 〈1, 2〉 7→ 〈2, 2〉
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Building a Multiplication Table

1 2

V:V

T:T

Ṽ:Ṽ
N:N V:Ṽ

Ṽ:Ṽ

N:N

T:T

We follow the states to understand how they multiply.

· V T N

V V T N
T T T N
N N T N
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Definite Functions

· V T N

V V T N
T T T N
N N T N

Recall the definitions.
1 An element x is an identity if and only if for all y, it holds that

x · y = y · x = y.

2 An element e is idempotent if and only if e = e · e.

3 A function is definite if and only if for all elements x, and all
idempotents e it holds that x · e = e.
(Visually, this means the idempotent elements “own” their
columns.)

Conclusion 1: Iterative Spreading is not definite.
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Definite Functions
· V T N

V V T N
T T T N
N N T N

Recall the definitions.
1 An element x is an identity if and only if for all y, it holds that

x · y = y · x = y.
2 An element e is idempotent if and only if e = e · e.
3 A function is definite if and only if for all elements x, and all

idempotents e it holds that x · e = e.
(Visually, this means the idempotent elements “own” their
columns.)

Conclusion 2: Iterative Spreading is tier-based definite!
Why? Because removing the identity element reveals a
definite structure!
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Tier projections and neutral letters

1 2

V:V

T:T

Ṽ:Ṽ
N:N V:Ṽ

Ṽ:Ṽ

N:N

T:T

· V T N

V V T N
T T T N
N N T N

• Elements projected to a tier matter – they can change
state.

• Elements not projected to a tier never change state. These
elements are neutral.

• Identity elements never change state!
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Discussion

1 2

V:V

T:T

Ṽ:Ṽ
N:N V:Ṽ

Ṽ:Ṽ

N:N

T:T

· V T N

V V T N
T T T N
N N T N

p ə ŋ a w a s a n

• The finite-state transducer is compatible with both
perspectives.

• The algebraic analysis highlights a tier-based analysis:
vowels and semivowels are neutral letters.
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Conclusion

• Iterative spreading belongs to both OSL and Tier-based
Definite classes.

• OSL processes are spread throughout the class of rational
functions, and theories with global optimization (OT, HG)
are not even bound by that.

• On the other hand, Tier-based Definite functions occupy a
small well-behaved corner.

• To determine which makes for a better theory, studies of
learnability and optionality can be brought to bear (in
addition to restrictiveness, studied here).

SFL | 14.11.2023 Lambert & Heinz | 31



Merci Beaucoup!

https://hackage.haskell.org/package/language-toolkit
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Appendix
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What “Regular” means

A set or function is regular provided the memory required
for the computation is bounded by a constant,
regardless of the size of the input.

input size

memory

Blue line indicates a regular process
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What “Regular” means

A set or function is regular provided the memory required
for the computation is bounded by a constant,
regardless of the size of the input.

input size

memory

Red line indicates a non-regular process
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Some computations important to grammar

• For given constraint C and any representation w:
Does w violate C? How many times?

• For given grammar G and any underlying representation w:
What surface representation(s) does G transform w to?
With what probabilities?
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Example: Vowel Harmony

Progressive
Vowels agree in backness with the first vowel in the underlying
representation.
Majority Rules
Vowels agree in backness with the majority of vowels in the
underlying representation.

UR Progressive Majority Rules

/nokelu/ nokolu nokolu
/nokeli/ nokolu nikeli
/pidugo/ pidige pudugo
/pidugomemi/ pidigememi pidigememi

(Bakovic 2000, Finley 2008, 2011, Heinz and Lai 2013)
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Progressive and Majority Rules Harmony

input size

memory

Progressive Harmony
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Progressive and Majority Rules Harmony

input size

memory

Majority Rules Harmony
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Some Perspective

Typological: Majority Rules is unattested. (Baković, 2000)

Psychological: Human subjects fail to learn Majority Rules
in artificial grammar learning experiments, unlike
progressive harmony. (Finley, 2008, 2011)

Computational: Majority Rules is not regular. (Riggle, 2004;
Heinz and Lai, 2013)
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Optimality Theory

1 There exists a CON and ranking over it which generates
Majority Rules: Agree(back)>>IdentIO[back].

2 Changing CON may resolve this, but this solution misses
the forest for the trees.

3 Global optimization over simple constraints requires
non-constant memory (Gerdemann and Hulden, 2012;
Lamont, 2021, 2022, and others)
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Phonological generalizations are regular

Evidence supporting the hypothesis that phonological general-
izations are finite-state originate with Johnson (1972) and Ka-
plan and Kay (1994), who showed how to translate any phono-
logical grammar defined by an ordered sequence of SPE-style
rewrite rules into a finite-state transducer.

Consequently:
1 Constraints on well-formed surface and underlying

representations are regular since the image and pre-image
of finite-state functions are regular. (Scott and Rabin, 1959)

2 Since virtually any phonological grammar can be expressed
as an ordered sequence of SPE-style rewrite rules, this
means “being regular” is a property of the functions that
any phonological grammar defines.
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