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Functions

x

f (x)
Numbers

• f (x) = x
• f (x) = x2

• f (x) = ln(x)
• f (x) = sin(x)

Strings
• f (x) = x
• f (x) = reverse(x)
• f (x) = x · x
• f (x) = x |x|
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Questions about Functions

1 What kinds of functions are there?
2 What properties do various classes of functions have?
3 How can functions be learned from examples?

• Lots is known about numerical functions. Witness the rich
vocabulary of classes and relationships. What about string
functions?

• Regarding learning, we will see some of the same issues
with numerical functions. Given a finite set of points (x, y),
there are infinitely many functions that contain them.

• Main message: Attend to smaller, well-structured classes to
find feasible learning algorithms. Often, they are enough.
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Linguistic Motivation

• Children are exposed to about 10M tokens a year and have
a vocabulary of about 1,000 words by age three.

• Yet by this time, their language production largely obeys
the grammatical rules of their communities’ language.

• Many aspects (not all) of our grammatical knowledge can
be expressed as string-to-string functions, especially the
phonological and morphological knowledge.

• Phonology word final consonant deletion:
cf. vous allez and vous voyagez

• Morphology inflection: il prend and tu prends
• How can these kind of patterns be learned from small

amounts of data?
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Wang 2023 - Experimental Setup

“Learning Transductions and Alignments with RNN Seq2seq Models”

id f (x) = x

rev f (x) = reverse(x)

copy f (x) = x · x

quadcopy f (x) = x |x|

• Strings were composed of the 26 lowercase English letters [a..z].
• Train/Dev data consisted of 1,000 pairs (x, f (x)) for each

6 ≤ |x| ≤ 15.
• Test data consisted of 5,000 pairs (x, f (x)) for each 6 ≤ |x| ≤ 15.
• Gen data consisted of 5,000 pairs (x, f (x)) for each

1 ≤ |x| ≤ 5, 16 ≤ |x| ≤ 30.
• Train/Dev/Test/Gen data were pairwise disjoint.
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Wang 2023 - Results

“We find that RNN seq2seq models are only able to approximate a
mapping that fits the training or in-distribution data, instead of

learning the underlying functions.”
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The big picture

All patterns

p1 p2

C

p2

D1 from p1 D2 from p2

A(D1)
A(D2)
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Part II

Classifying String Functions
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Many logically possible string functions

• Reversal
abcd 7→ dcba

• Prefixation
abbb 7→ cabbb

• Suffixation Mod 2
abbaab 7→ abbaabd
abaab 7→ abaabc

• Bounded Spreading
abbb 7→ aabb

• Unbounded Spreading
abbb 7→ aaaa
abbbdb 7→ aaaadb

• Projected Unbounded
Spreading

c10ac10bc10bc10bc10

7→ c10ac10ac10ac10ac10

• Sour Grapes
abbbb 7→ aaaaa
abbdb 7→ abbdb

• Two-sided Unbounded Spread
abba 7→ aaaa
abbb 7→ abbb

• Majority Rules
abbaa 7→ aaaaa
abbab 7→ bbbbb

• Partial Copying
abcd 7→ ababcd

• Full Copying
abcd 7→ abcdabcd

• Triplication
abcd 7→ abcdabcdabcd

• Quadratic Copying
abcd 7→ abcdabcdabcdabcd

• Iterated Prefix Copying
abcd 7→ a ab abc abcd
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Many logically possible string functions
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3 Prefixation
abbb 7→ cabbb

7 Suffixation Mod 2
abbaab 7→ abbaabd
abaab 7→ abaabc

3 Bounded Spreading
abbb 7→ aabb

3 Unbounded Spreading
abbb 7→ aaaa
abbbdb 7→ aaaadb

3 Projected Unbounded
Spreading

c10ac10bc10bc10bc10

7→ c10ac10ac10ac10ac10

37 Sour Grapes
abbbb 7→ aaaaa
abbdb 7→ abbdb

3 Two-sided Unbounded Spread
abba 7→ aaaa
abbb 7→ abbb

7 Majority Rules
abbaa 7→ aaaaa
abbab 7→ bbbbb

3 Partial Copying
abcd 7→ ababcd

3 Full Copying
abcd 7→ abcdabcd

3 Triplication
abcd 7→ abcdabcdabcd

7 Quadratic Copying
abcd 7→ abcdabcdabcdabcd

7 Iterated Prefix Copying
abcd 7→ a ab abc abcd

HCL | 27.10.2023 J. Heinz | 9



Representing String Functions with Automata

Automata Ingredients
• Read tape for input and write tape for output
• Finite set of states
• Instructions for reading inputs, writing outputs, and

changing states

Some Options
• Read 1-way or 2-way
• Deterministic or non-deterministic
• Augment states with stacks, queues, registers

We begin with unaugmented 2-way non-deterministic, and focus
on unaugmented 1-way deterministic
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Example: long distance harmony

Also known as “projected unbounded spreading”

10 2

a:a
b:a
c:c

c:c
a:b
b:b
c:c

a:a b:b

−→ 1 c−−−−→
c

1 a−−−−→
a

0 c−−−−→
c

0 c−−−−→
c

0 b−−−−→
a

0 · · · −→
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Landscape of Transducers

Filiot and Reynier 2016
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Landscape of Transducers

prefixaton
spreading
suffixation

mod 2

sour grapes
reversal

reduplication
triplication

quadratic copying
iterated prefix copying

Filiot and Reynier 2016
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Algebra provides a finer-grained view

• Inputs to a finite-state automaton affect its behavior in
systematic ways.

• The syntactic monoid representation helps make its
algebraic properties clear.

• There are algorithms to compute it from any 1 way
deterministic transducer.
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Syntactic Monoids and Semigroups

• A semigroup is a set closed under a binary operation (S ,×).

• A monoid is a semigroup with an identity element (S ,×, 1).

• The product of two elements x, y in the syntactic
semigroup S of an automaton A is determined by the state
reached by taking the path labeled y from state x in A

xy = z iff x
y

↪−−−→ z
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Example: with Σ = {a, b, c}

λ

a

c

b

ab

ba

a

b

c

a

b
c

a
b, c

a
b, c

a

b

c

a, b, c a b c ab ba
a a ab c ab ab
b ba b b ab ba
c a c c ab a

ab ab ab ab ab ab
ba ba ab b ab ab

The syntactic monoid of a transducer and its Cayley table.
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Definite Structure: Se = e

• An idempotent is an element e in a semigroup S such that
ee = e.

• An automaton is definite if and only if its syntactic
semigroup has the property that for all idempotents e ∈ S
and for all x ∈ S , it holds that xe = e.

• This is often written Se = e with universal quantification
left implicit.

a b c ab ba
a a ab c ab ab
b ba b b ab ba
c a c c ab a

ab ab ab ab ab ab
ba ba ab b ab ab

T V D VT
T D V D VT
V VT V D VT
D D V D VT

VT D V D VT
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Deciding Definiteness

Input: a finite-state automaton
1 Construct the syntactic monoid.
2 Construct the Cayley Table.
3 Identify the idempotents.
4 Return the answer to this question:

For all idempotents e, does Se = e?
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Example of Definite Automaton

λ T

V

D

VTT

V

D

V

D,T

V

T

D

D,T

V

D,T

V

T V D VT
T D V D VT
V VT V D VT
D D V D VT

VT D V D VT

This is the syntactic monoid of a transducer representing
Intervocalic voicing whereby voiceless consonants become
voiced between two vowels, e.g. tantata 7→ tantada.
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Definiteness as locality

Definite string functions have the property that there exists a k
such that what is output at any given point only depends on
the last k letters read (cf. the Markov property).

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

(Perles et al. 1963, Vaysse 1986, Lambert and Heinz 2023)
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Definiteness as locality (con’t)

Definite functions are also known as Input Strictly Local
Functions

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

• Many morphological and phonological processes in natural
language are definite functions.

• The k-definite functions are learnable (in a sense to be
made more precise in a moment).

(Chandlee et. al 2014, Jardine et al. 2014, Chandlee and Heinz 2018)
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Other Algebraic Classes

The algebraic classification has been a rich area of study for
several decades.

Class Property

Definite Se = e
Reverse Definite eS = e
Nilpotent SeS = e
Generalized Definite eSe = e
Locally Testable ∀x, y ∈ eSe : xx = x, xy = yx
…

Table: Some Algebraic Varieties

Green 1951, Ginzburg 1966, Almeida 1995, Pin 1984, 1997, 2021, a.o.
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Lambert 2022, 2023: Algebraic Hierarchy

1
Σ∗ or ∅

JI
1-lt

Acom
〈1,𝑡〉-ltt

J
piecewise testable

L R

DA
fo2 [<]

MeJI
generalized locally testable

MeAcom

MeJ

MeL MeR

MeDA
fo2 [<,bet]

H
star-free

F
(co)finite

D
definite

K
rev. def.

L1
gen. def.

LJI
locally testable

LAcom
locally threshold testable

LJ

LL LR

LDA
fo2 [<,C]

ÈFÉT
tier (co)finite

ÈDÉT
tier def.

ÈKÉT
tier rev. def.

ÈL1ÉT
tier gen. def.

ÈLJIÉT
tier locally testable

ÈLAcomÉT
tier loc. thresh. testable

ÈLJÉT

ÈLLÉT ÈLRÉT

ÈLDAÉT

Some subregular classes for sets and functions over sequences, circa 2022
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Part III

Learning Regular Functions
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What does learning mean?

Some ideas…

A ML system is a consistent estimator for a parametric
model iff for each parameter Θ in the model, for every stream
of data generated randomly i.i.d. according to Θ,
Pr(limn→∞ Θ̂ = Θ) = 1.
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What does learning mean?

Some ideas…

A ML system probably approximately correctly (PAC)
learns a class of concepts iff for each concept C in the class,
for each distribution D over the instance space, there is some n
such that for all m > n, we have Pr[errorD(Ĉ ,C) < ε] > 1 − δ.
(Valiant 1984)
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What does learning mean?

Some ideas…

A ML system identifies a class of concepts in the limit
from positive data iff for each concept C in the class, for
every positive presentation of C , there is some n such that for
all m > n, we have Rm = Rn and C(Rn) = C . (Gold 1967)
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Theoretical Learning Results

1 The class of rational relations is neither PAC-learnable nor
identifiable in the limit from positive data.

2 Sequential functions (1 way deterministic) can be identified
in the limit from positive data in cubic time and data by
OSTIA (Oncina et al. 1993).

3 Algorithms for identifying definite functions in the limit
from positive data run in quadratic time and data
(Chandlee et al. 2014) and even in linear time and data
(Jardine et al. 2014).
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SOSFIA (Jardine et al. 2014)

10 2

a:�
b:�
c:�

c:�
a:�
b:�
c:�

a:� b:�

• Many algebraic classes, appropriately parameterized, can
be represented by a single deterministic transducer.

• The only difference is how the outputs are labeled.
• Consequently, learning reduces to inferring the output

labels of the transitions.
• Jardine et al. 2014 provides a theoretical, not practical,

solution to this problem.
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Go smaller, not bigger!

All patterns

C
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Conclusion

1 The learning of string functions is ongoing.

2 Talking about non-local dependencies is like talking about
non-linear functions. There is a rich classification of them,
let’s use it!

3 Feasibly solving a learning problem requires defining a
target class C of patterns which must be suitably
structured.

4 It can help reduce the instance space of the learning
problem to only consider the kinds of things you have to
learn.
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Open Questions

1 How can we make SOSFIA more practical?
2 Learning factored representations of transducers
3 Subregular classes of tree transductions for natural

language syntax and semantics
4 Deterministic regular relations

Thank You
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