
Beyond Optimality:

The computational nature of

phonological maps and constraints

Jeffrey Heinz (Delaware) and William Idsardi (Maryland)

Whither OT?

Workshop at the 23rd Manchester Phonology Meeting

May 27, 2015

University of Manchester

1

Primary Collaborators

• Dr. Jane Chandlee, UD PhD 2014 (Haverford, as of July 1)

• Prof. Rémi Eryaud (U. Marseilles)

• Adam Jardine (UD, PhD exp. 2016)

• Prof. Jim Rogers (Earlham College)

2

Main Claim

• Particular sub-regular computational properties—and not

optimization—best characterize the nature of phonological

generalizations.

3

Part I

What is phonology?

4

The fundamental insight

The fundamental insight in the 20th century which shaped the

development of generative phonology is that the best explanation

of the systematic variation in the pronunciation of morphemes is to

posit a single underlying mental representation of the phonetic

form of each morpheme and to derive its pronounced variants with

context-sensitive transformations.

(Kenstowicz and Kisseberth 1979, chap 6; Odden 2014, chap 4)

5

Example from Finnish

Nominative Singular Partitive Singular

aamu aamua ‘morning’

kello kelloa ‘clock’

kylmæ kylmææ ‘cold’

kømpelø kømpeløæ ‘clumsy’

æiti æitiæ ‘mother’

tukki tukkia ‘log’

yoki yokea ‘river’

ovi ovea ‘door’

6

Mental Lexicon

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

æiti tukki yoke ove

mother log river door

Word-final /e/ raising

1. e −→ [+high] / #

2. *e# >> Ident(high)

7

If your theory asserts that . . .

There exist underlying representations of morphemes which are

transformed to surface representations.

Then there are three important questions. . .

1. What is the nature of the abstract, underlying, lexical

representations?

2. What is the nature of the concrete, surface representations?

3. What is the nature of the transformation from underlying

forms to surface forms?

Theories of Phonology. . .

• disagree on the answers to these questions, but they agree on

the questions being asked.
8

Desiderata for phonological theories

1. Provide a theory of typology

• Be sufficiently expressive to capture the range of

cross-linguistic phenomenon

(explain what is there)

• Be restrictive in order to be scientifically sound

(explain what is not there)

2. Provide learnability results

(explain how what is there could be learned)

3. Provide insights

(for example: grammars should distinguish marked structures

from their repairs)

4. Effectively computable

9

Part II

Transformations

10

Phonological transformations are infinite objects

Extensions of grammars in phonology are infinite objects in the

same way that perfect circles represent infinitely many points.

Word-final /e/ raising

1. e −→ [+high] / #

2. *e# >> Ident(high)

Nothing precludes these grammars from operating on words of any

length. The infinite objects those grammars describe look like this:

(ove,ovi), (yoke,yoki), (tukki,tukki), (kello,kello),. . .

(manilabanile,manilabanili), . . .

11

Likelihood and Well-formedness

• Some would equate probability with well-formedness.

Unless all words which violate some markedness constraint have

probabiltity zero, this effectively changes the object of inquiry from

an infinite set to a finite one.

Why?

• If there are infinitely many words that violate no markedness

constraints and at least one word that violates a markedness

constraint (like [bzaSrk]) that has probabilty ǫ > 0 . . .

• Then at some point the probabilities must decrease

exponentially in order to sum to 1.

• Therefore, there are infinitely many words violating no

markedness constraints which have probability < ǫ (including

perhaps [kapalatSapoUlapinisiwaki]).
12

Truisms about transformations

1. Different grammars may generate the same transformation.

Such grammars are extensionally equivalent.

2. Grammars are finite, intensional descriptions of their (possibly

infinite) extensions.

3. Transformations may have properties largely independent of

their grammars.

• output-driven maps (Tesar 2014)

• regular functions (Elgot and Mezei 1956, Scott and Rabin

1959)

• subsequential functions (Oncina et al. 1993, Mohri 1997,

Heinz and Lai 2013)

13

Logically Possible Maps

Regular Maps
(≈ rule-based theories)

Phonology

1. Rule-based grammars were shown to be extensionally equivalent to

regular transductions (Johnson 1972, Kaplan and Kay 1994).

2. Some argued they overgenerated and nobody knew how to learn

them.
14

Part III

Analytical Framework

15

Computation is reflected in logical power

Subregular hierarchies organize pattern complexity along two

dimensions.

• logical power along the vertical axis

• representational primitives along the horizontal axis.

16

Logical Characterizations of Subregular Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Finite

Successor Precedence
Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011,

Rogers et al. 2013)17

Size of automata ∝ complexity? No.

0 1
a

b

c

b
c

aG1

0 1
a

b

c

a

b

c
G2

• G1 maintains a short term memory w.r.t. [a] (i.e. State 1 means “just

observed [a]”).

• G2 maintains a memory of the even/odd parity of [a]s (i.e. State 1 means

“observed an even number of [a]s”).

• If dashed transitions are omitted, then G1 generates/recognizes all words

except those with a forbidden string [ac]; and G3 generates/recognizes all

words except those with a [c] whose left context contains an even number

of [a]s. G1 is Strictly 2-Local, and G3 is Counting.

18

Finite-state automata are a low-level language

Automata can serve as a lingua franca because different grammars

can be translated into them.

MSO FORMULA AUTOMATA

RULE GRAMMARS

OT GRAMMARS

* **

*Büchi 1960.

**Johnson 1972, Kaplan and Kay 1994, Beesley and Karttunen 2003.

***Under certain conditions (Frank and Satta 1998, Kartunnen 1998,

Gerdemann and van Noord 2000, Riggle 2004, Gerdemann and Hulden

2012)

19

Logic as a high-level language

1. Logical formulae over relational structures (model theory)

provide a high-level description language (which are easy to

learn to write—even for whole grammars).

2. We argue these levels of complexity yield hypotheses

characterizing phonology that provide

(a) a better fit to the typology than optimization,

(b) have learning results that are as good or better than in OT,

(c) provide equally good or better insights,

(d) and are effectively computable.

20

Part IV

Input Strictly Local Functions

21

Input Strict Local Transformations

This is a class of transformations which. . .

1. generalizes Strictly Local Stringsets,

2. captures a wide range of phonological phenomena,

3. including opaque transformations,

4. and is effectively learnable!

(Chandlee 2014, Chandlee and Heinz, under revision)

22

Strictly Local constraints for strings

When words are represented as strings, local sub-structures are

sub-strings of a certain size.

Here is the string abab. If we fix a diameter of 2, we have to check

these substrings.

ok? ok?ok? ok? ok?

a⋊ a b b a a b b ⋉

An ill-formed sub-structure is forbidden.

(Rogers and Pullum 2011, Rogers et al. 2013)

23

Strictly Local constraints for strings

When words are represented as strings, local sub-structures are

sub-strings of a certain size.

• We can imagine examining each of the local-substructures,

checking to see if it is forbidden or not. The whole structure is

well-formed only if each local sub-structure is.

b a b a ba aaa b... ...b

(Rogers and Pullum 2011, Rogers et al. 2013)

24

Strictly Local constraints for strings

When words are represented as strings, local sub-structures are

sub-strings of a certain size.

• We can imagine examining each of the local-substructures,

checking to see if it is well-formed. The whole structure is

well-formed only if each local sub-structure is.

b a b a ba aaa b... ...b

(Rogers and Pullum 2011, Rogers et al. 2013)

25

Strictly Local constraints for strings

When words are represented as strings, local sub-structures are

sub-strings of a certain size.

• We can imagine examining each of the local-substructures,

checking to see if it is well-formed. The whole structure is

well-formed only if each local sub-structure is.

b a b a ba aaa b... ...b

(Rogers and Pullum 2011, Rogers et al. 2013)

26

Examples of Strictly Local constraints for strings

• *aa

• *ab

• *NC
˚

• NoCoda

Examples of Non-Strictly Local constraints

• *s. . . S (Hansson 2001, Rose and Walker 2004, Hansson 2010,

inter alia)

• *#s. . . S# (Lai 2012, to appear, LI)

• Obligatoriness: Words must contain one primary stress (Hayes

1995, Hyman 2011, inter alia).

27

Input Strict Local Transformations

This is a class of transformations which. . .

1. generalizes Strictly Local Stringsets,

2. captures a wide range of phonological phenomena,

3. including opaque transformations,

4. and is effectively learnable!

28

Input Strict Locality: Main Idea

(Chandlee 2014, Chandlee and Heinz, under revison)

These transformations are Markovian in nature.

x0 x1 . . . xn

↓

u0 u1 . . . un

where

1. Each xi is a single symbol (xi ∈ Σ1)

2. Each ui is a string (ui ∈ Σ∗
2)

3. There exists a k ∈ N such that for all input symbols xi its

output string ui depends only on xi and the k − 1 elements

immediately preceding xi.

(so ui is a function of xi−k+1xi−k+2 . . . xi)

29

Input Strict Locality: Main Idea in a Picture

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

Figure 1: For every Input Strictly 2-Local function, the output string

u of each input element x depends only on x and the input element

previous to x. In other words, the contents of the lightly shaded cell

only depends on the contents of the darkly shaded cells.

30

Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

31

Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

32

Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

33

Example: Word-Final /e/ Raising is ISL with

k = 2

/ove/ 7→ [ovi]

input: ⋊ o v e ⋉

output: ⋊ o v λ i ⋉

34

What this means, generally.

The necessary information to decide the output is contained within

a window of bounded length on the input side.

• This property is largely independent of whether we describe

the transformation with constraint-based grammars,

optimization-based grammars, rule-based grammars, or other

kinds of grammars.

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

35

How does this relate to traditional phonological

grammatical concepts?

1. Like OT, k-ISL functions do not make use of intermediate

representations.

2. Like OT, k-ISL functions separate marked structures from

their repairs (Chandlee et al. to appear, AMP 2014).

• k-ISL functions are sensitive to all and only those

markedness constraints which could be expressed as

*x1x2 . . . xk, (xi ∈ Σ). (So Strictly k-Local markedness

constraints)

• In this way, k-ISL functions model the “homogeneity of

target, heterogeneity of process” (McCarthy 2002)

36

Part IV

Learning ISL functions

37

Results in a nutshell

• Particular finite-state transducers can be used to represent ISL

functions.

• Grammatical inference techniques (de la Higuera 2010) are

used for learning.

• Theorems: Given k and a sufficient sample of (u, s) pairs any

k-ISL function can be exactly learned in polynomial time and

data.

– ISLFLA (Chandlee et al. 2014, TACL) (quadratic time and

data)

– SOSFIA (Jardine et al. 2014, ICGI) (linear time and data)

38

Comparison of learning results in classic OT

• Recursive Constraint Demotion (RCD) is guaranteed to give

you a consistent grammar in reasonable time.

• Exact convergence is not guaranteed for RCD because the

nature of the data sample needed for exact convergence is not

yet known.

• On the other hand, we are able to characterize a sample which

yields exact convergence.

39

Part V

ISL Functions and Phonological Typology

40

What can be modeled with ISL functions?

1. Many individual phonological processes.

(local substitution, deletion, epenthesis, and metathesis)

Theorem: Transformations describable with a rewrite rule

R: A −→ B / C D where

• CAD is a finite set,

• R applies simultaneously, and

• contexts, but not targets, can overlap

are ISL for k equal to the longest string in CAD.

(Chandlee 2014, Chandlee and Heinz, in revision)

41

What can be modeled with ISL functions?

2. Approximately 95% of the individual processes in P-Base

(v.1.95, Mielke (2008))

3. Many opaque transformations without any special modification.

(Chandlee 2014, Chandlee and Heinz, in revision)

42

Opaque ISL transformations

• Opaque maps are typically defined as the extensions of

particular rule-based grammars (Kiparsky 1971, McCarthy

2007). Tesar (2014) defines them as non-output-driven.

• Baković (2007) provides a typology of opaque maps.

– Counterbleeding

– Counterfeeding on environment

– Counterfeeding on focus

– Self-destructive feeding

– Non-gratuitous feeding

– Cross-derivational feeding

• Each of the examples in Baković’s paper is ISL.

(Chandlee et al. 2015, GALANA & GLOW workshop on

computational phonology)

43

Example: Counterbleeding in Yokuts

‘might fan’

/Pili:+l/

[+long] → [-high] Pile:l

V −→ [-long] / C# Pilel

[Pilel]

44

Example: Counterbleeding in Yokuts is ISL with

k=3

/Pili:l/ 7→ [Pili:l]

input: ⋊ P i l i: l ⋉

output: ⋊ P i l λ λ el ⋉

45

Example: Counterbleeding in Yokuts is ISL with

k=3

/Pi:lil/ 7→ [Pilel]

input: ⋊ P i l i: l ⋉

output: ⋊ P i l λ λ el ⋉

46

Example: Counterbleeding in Yokuts is ISL with

k=3

/Pili:l/ 7→ [Pilel]

input: ⋊ P i l i: l ⋉

output: ⋊ P i l λ λ el ⋉

47

Interim Summary

Many phonological patterns, including many opaque ones, have the

necessary information to decide the output contained within a

window of bounded length on the input side.

u

b a b b a ba aaa b... ...

x

b a b b a ba aaa b... ...

And can thus be learned by the ISLFLA and SOSFIA algorithms!

48

What CANNOT be modeled with ISL functions

1. progressive and regressive spreading

2. long-distance (unbounded) consonant and vowel harmony

3. non-regular transformations like Majority Rules vowel harmony

and non-subsequential transformations like Sour Grapes vowel

harmony (Baković 2000, Finley 2008, Heinz and Lai 2013)

(Chandlee 2014, Chandlee and Heinz, in revision)

49

Undergeneration? Yes, for now. . .

• ISL functions are insufficiently expressive for spreading and

long-distance harmony. I will discuss these later (or in Q&A).

Overgeneration? Not so much.

• Theorem: ISL is a proper subclass of left and right

subsequential functions.

(Chandlee 2014, Chandlee et al. 2014)

• Corollary: SG and MR are not ISL for any k.

(Heinz and Lai 2013)

• So MR and SG are correctly predicted to be outside the

typology.

50

Logically Possible Maps

Regular Maps
(≈ rule-based theories)

Phonology

ISL maps are in green

× SG × MR

51

Undergeneration in Classic OT

• It is well-known that classic OT cannot generate opaque maps

(Idsardi 1998, 2000, McCarthy 2007, Buccola 2013)

(though Baković 2007, 2011 argues for a more nuanced view).

• Many, many adjustments to classic OT have been proposed.

– constraint conjunction (Smolensky), sympathy theory (McCarthy),

turbidity theory (Goldrick), output-to-output representations (Benua),

stratal OT (Kiparsky, Bermudez-Otero), candidate chains (McCarthy),

harmonic serialism (McCarthy), targeted constraints (Wilson),

contrast preservation (Lubowicz) comparative markedness (McCarthy)

serial markedness reduction (Jarosz), . . .

See McCarthy 2007, Hidden Generalizations for review,

meta-analysis, and more references to these earlier attempts.

52

Adjustments to Classic OT

The aforemetioned approaches invoke different representational

schemes, constraint types and/or architectural changes to classic

OT.

• The typological and learnability ramifications of these changes

is not yet well-understood in many cases.

• On the other hand, no special modifications are needed to

establish the ISL nature of the opaque maps we have studied.

53

Overgeneration in Classic OT

• It is not controversial that classic OT generates non-regular

maps with simple constraints (Frank and Satta 1998, Riggle

2004, Gerdemann and Hulden 2012, Heinz and Lai 2013)

(Majority Rules vowel harmony is one example.)

54

Simple constraints in OT generate non-regular

maps

Ident, Dep >> *ab >> Max

anbm 7→ an, if m < n

anbm 7→ bm, if n < m

(Gerdemann and Hulden 2012)

55

Optimization misses an important generalization

• When computing the output of phonological transformations,

the necessary information is contained within sub-structures of

bounded size.

• This is neither expected nor predicted under global

optimization.

• On the other hand, it is one of the defining characteristics of

k-ISL.

56

OT’s greatest strength is its greatest weakness.

• The signature success of a successful OT analysis is when

complex phenomena are understood as the interaction of

simple constraints.

• But the overgeneration problem is precisely this problem:

complex—but weird—phenomena resulting from the

interaction of simple constraints (e.g. Hansson 2007, Hansson

and McMullin 2014, on ABC).

• As for the undergeneration problem, opaque candidates are not

optimal in classic OT.

57

Comparing ISL with classic OT w.r.t. typology

Logically Possible Maps

Regular Maps
(≈ rule-based theories)

Phonology

ISL maps are in green

× SG × MR

OT

58

Part VI

Conclusion

59

Logical Characterizations of Subregular Stringsets

Regular

Non-Counting

Locally Threshold Testable

Locally Testable Piecewise Testable

Strictly Local Strictly Piecewise

Finite

Successor Precedence
Monadic

Second Order

First

Order

Propositional

Conjunctions

of Negative

Literals

(McNaughton and Papert 1971, Heinz 2010, Rogers and Pullum 2011,

Rogers et al. 2013)60

Some conclusions

• k-ISL functions provide both a more expressive and restrictive

theory of typology than classic OT, which we argue better

matches the attested typology.

– In particular: Many phonological transformations,

including opaque ones, can be expressed with them, but

non-subsequential transformations cannot be.

• k-ISL functions are feasibly learnable.

• Like classic OT, there are no intermediate representations, and

k-ISL functions can express the “homogeneity of target,

heterogeneity of process” which helps address the conspiracy

and duplication problems.

• Unlike OT, subregular computational properties like ISL—and

not optimization—form the core computational nature of

phonology.

61

Questions and Thanks

† We thank Iman Albadr, Joe Dolatian, Rob Goedemans, Hyun Jin

Hwangbo, Cesar Koirala, Regine Lai, Huan Luo, Kevin McMullin,

Taylor Miller, Amanda Payne, Curt Sebastian, Kristina

Strother-Garcia, Bert Tanner, Harry van der Hulst, Irene Vogel and

Mai Ha Vu for valuable discussion and feedback.

We also thank the organizers of the “Whither OT?” workshop.

62

EPILOGUE

(EXTRA SLIDES)

• What about spreading and long-distance phonology?

• How do I write a grammar?

• More examples of ISL, please.

• How do the learning algorithms work exactly?

• . . .

63

QUESTION

Well, what about long-distance phonology?

64

Formal Language Theory

• ISL functions naturally extend Strictly Local (SL) stringsets in

Formal Language Theory.

• For SL stringsets, well-formedness can be decided by examining

windows of size k.

• SL stringsets are the extensions of local phonotactic constraints

(Heinz 2010, Rogers et al. 2013)

x

b a b b a ba aaa b... ...

(McNaughton and Papert 1971, Rogers and Pullum 2011)

65

What about spreading?

• Left (and Right) Output SL functions are other generalizations

of SL stringsets which model precisely progressive and

regressive spreading (Chandlee et al., MOL 2015).

u

b a b b a ba aaa b... ...

x

b a b a ba aaa b... ...b

Unfortunately, these OSL functions cannot model transformations

with two-sided contexts.

66

Input-Output Strictly Local functions

Ultimately, we need a way to combine ISL and OSL. The

combination will not be functional composition, but a hybrid

(Chandlee, Eyraud and Heinz, work in progress).

u

b a b a ba aaa b... ...

x

b a b a ba aaa b... ...b

b

• We expect this will be exactly the right computational notion

of locality in phonological transformations.

• IOSL transformations will still not describe long-distance

phenomena. 67

Long-distance transformations

• Strictly-Piecewise (SP) and Tier-based Strictly Local (TSL)

stringsets model long-distance phonotactics (Heinz 2010, Heinz

et al. 2011).

• The logical power is the same as for SL stringsets but

representations of words are different.

– SL stringsets model words with the successor relation.

– SP stringsets model words with the precedence relation.

– TSL stringsets model words with order relations among

elements common to a phonological tier (cf. ABC).

– SL, SP, and TSL each ban sub-structures, but the

sub-structures themselves are different.

• We expect functional characterizations of SP and TSL

stringsets will model long-distance maps (work-in-progress).

68

More word representations (expanding the

horizontal axis. . .)

• Adam Jardine examines the implications of this way of

thinking for richer word models used in phonology, such as

autosegmental representations.

(Jardine 2014 AMP, Jardine 2014 NECPHON, Jardine and

Heinz 2015 CLS, Jardine and Heinz, MOL 2015)

• For instance under certain conditions, the No Crossing

Constraint and the Obligatory Contour Principle can be

obtained by banning sub-structures of autosegmental

representations (so they are like SL in this respect).

69

QUESTION

Well, how am I supposed to write a grammar?

70

Use logical formula. Example: Finnish /e/ raising

Here is how we can express in first-order logic which elements in

the output string are [+high].

ϕhigh(x)
def
= high(x) ∨

(

front(x) ∧ nonlow(x) ∧ nonround(x) ∧

(∃y)[after(x, y) ∧ boundary(y)]
)

Essentially, this reads as follows: “Element x in the output string

will be [+high] only if its corresponding x in the input string is

either [+high] or /e/ followed by a word boundary.”

(See also Potts and Pullum 2002)

71

Why logical formula?

1. They are a high-level language.

(a) They are very expressive.

(b) They are precise.

(c) They are easy to learn with only a little practice.

(I would argue in each of these respects they are superior to

rule-based and constraint-based grammars).

2. Linguists can use (and systematically explore) different

representational primitives like features, syllables, etc.

3. They can be translated to and from finite-state automata

(Büchi 1960).

72

Finite-state automata are a low-level language

Automata can serve as a lingua franca because different grammars

can be translated into them and then equivalence can be checked.

MSO FORMULA AUTOMATA

RULE GRAMMARS

OT GRAMMARS

* **

*Büchi 1960.

**Johnson 1972, Kaplan and Kay 1994, Beesley and Karttunen 2003.

***Under certain conditions (Frank and Satta 1998, Kartunnen 1998,

Gerdemann and van Noord 2000, Riggle 2004, Gerdemann and Hulden

2012)

73

Workflow

My idea is this:

1. The phonologist writes in the high-level logical language

exactly the grammar they want, using the representational

primitives they think are important.

2. This can be automatically translated (compiled) into a

low-level language (like automata) for examination.

3. Algorithms can process the automata and determine whether

the generalization is ISL, OSL, IOSL, or possesses some other

subregular property.

74

QUESTION

Can I see more examples of Input Strictly Local

transformations?

75

Example: Post-nasal voicing

/imka/ 7→ [imga]

input: ⋊ i m k a ⋉

output: ⋊ i m g a ⋉

Left triggers are more intuitive.

76

Example: Post-nasal voicing

/imka/ 7→ [imga]

input: ⋊ i m k a ⋉

output: ⋊ i m g a ⋉

Left triggers are more intuitive.

77

Example: Post-nasal voicing

/imka/ 7→ [imga]

input: ⋊ i m k a ⋉

output: ⋊ i m g a ⋉

Left triggers are more intuitive.

78

Example: Intervocalic Spirantization

/pika/ 7→ [pixa] and /pik/ 7→ [pik]

input: ⋊ p i k a ⋉

output: ⋊ p i λ xa ⋉

But if there is a right context, the ‘empty string trick’ is useful to

see it is ISL.

79

Example: Intervocalic Spirantization

/pika/ 7→ [pixa] and /pik/ 7→ [pik]

input: ⋊ p i k a ⋉

output: ⋊ p i λ xa ⋉

But if there is a right context, the ‘empty string trick’ is useful to

see it is ISL.

80

Example: Intervocalic Spirantization

/pika/ 7→ [pixa] and /pik/ 7→ [pik]

input: ⋊ p i k ⋉

output: ⋊ p i λ k ⋉

But if there is a right context, the ‘empty string trick’ is useful to

see it is ISL.

81

QUESTION

What is the automata characterization of Input

k-Strictly Local transformations?

82

Automata characterization of k-ISL functions

Theorem Every k-ISL function can be modeled by a k-ISL

transducer and every k-ISL transducer represents a k-ISL

function.

The state space and transitions of these transducers are

organized such that two input strings with the same k − 1

suffix always lead to the same state.

(Chandlee 2014, Chandlee et. al 2014)

83

Example: Fragment of 2-ISL transducer for

/e/ raising

λ V:λ

C:λ

e:i

C:C

e:λ

V:V

C:C

e:λ

V:V

V:V

C:C

e:e

V:V

e:λ

C:C

/ove/ 7→ [ovi]

V represents any vowel that is not /e/ and C any consonant. So

the diagram collapses states and transitions. The nodes are labeled

name:output string.
84

QUESTION

How do the learning algorithms work?

85

ISLFLA: Input Strictly Local Function Learning

Algorithm

• The input to the algorithm is k and a finite set of (u, s) pairs.

• ISLFLA builds a input prefix tree transducer and merges states

that share the same k − 1 prefix.

• Provided the sample data is of sufficient quality, ISLFLA

provably learns any function k-ISL function in quadratic time.

• Sufficient data samples are quadratic in the size of the target

function.

(Chandlee et al. 2014, TACL)

86

SOSFIA: Structured Onward Subsequential

Function Inference Algorithm

SOSFIA takes advantage of the fact that every k-ISL function can

be represented by an onward transducer with the same structure

(states and transitions).

• Thus the input to the algorithm is k-ISL transducer with

empty output transitions, and a finite set of (u, s) pairs.

• SOSFIA calculates the outputs of each transition by examining

the longest common prefixes of the outputs of prefixes of the

input strings in the sample (onwardness).

• Provided the sample data is of sufficient quality, SOSFIA

provably learns any function k-ISL function in linear time.

• Sufficient data samples are linear in the size of the target

function.

(Jardine et al. 2014, ICGI)
87

