
Very efficient learning of structured
classes of subsequential functions from

positive data

Adam Jardine (Delaware)

Jane Chandlee (Delaware)

Rémi Eyraud (Marseilles)

Jeffrey Heinz (Delaware)

The 12th International Conference of Grammatical Inference

University of Kyoto, Japan

September 18, 2014

The researchers from Delaware acknowledge support from

NSF#1035577.

1

This paper

1. We present the Structured Onward Subsequential Function

Inference Algorithm (SOSFIA), which identifies proper

subclasses of subsequntial functions in linear time and data.

2. The key to this result is a priori knowledge regarding the

common structure shared by every function in the class.

3. At least one of these classes appears to be quite natural. The

Input Strictly Local class of functions adapts the notion of

Strictly Local stringsets [MP71] to mappings [Cha14, CEH14].

4. Demonstrations in phonology and morphology where such

structural knowledge plausibly exists a priori.

2

Part 1: Background

1. Longest Common Prefix

2. Subsequential transducers

3. Subsequential functions

4. Onwardness

5. OSTIA, OSTIA-D, OSTIA-R

3

Longest Common Prefix

1. Let sh pref(S) denote the shared prefixes of a stringset S.

sh pref(S) =
{

u | (∀s ∈ S)(∃v ∈ Σ∗)[s = uv]
}

2. The longest common prefix (lcp) of a stringset S is

lcp(S) = w ∈ {u ∈ sh pref(S)} and
(

∀u′ ∈ sh pref(S)
)[

|w| ≥ |u′|
]

We set the lcp(∅) = λ.

4

Subsequential Finite State Transducers (SFSTs)

q0 : λ

q1 : a q2 : b

a : cd b : dc

b : cc

a : dd

a : cdc b : dcd

Informally, SFSTs are weighted deterministic transducers where the

strings are weights and multiplication is concatenation.

t(aba) = cdccdda because

a b a

q0 → q1 → q2 → q1 →

cd cc dd a

5

Subsequential functions

1. The tails of w ∈ Σ∗ with respect to t : Σ∗ → ∆∗ is

tailst(w) =
{

(x, v) | t(wx) = uv and u = lcp(t(wΣ∗))
}

.

2. If tailst(w) = tailst(w
′) then w,w′ are tail-equivalent with

respect to t, written w ∼t w
′.

3. A function t : Σ∗ → ∆∗is subsequential if ∼t partitions Σ
∗ into

finitely many blocks.

6

Onwardness

Informally, a SFST τ is onward if the longest common prefix of the

outgoing transitions of each noninitial state is the empty string.

onward(τ)
def
=

(

∀q ∈ (Q− q0)
)

[

lcp

{

w ∈ Σ∗|(∃a ∈ Σ, r ∈ Q)[(q, a, w, r) ∈ δ]
}

= λ
]

q1

a : bc

b : ba

Not Onward

q2

a : bc

b : ca

Onward

7

OSTIA

Theorem 1 ([OG91]) Every subsequential function has a

canonical form given by an onward subsequential transducer.

Theorem 2 ([OGV93]) Total subsequential functions are

identifiable in the limit from positive data in cubic time.

• An interesting corollary is that partial subsequential functions

are identifiable in this weak sense:

If t is the target function and h is the hypothesis OSTIA

returns, then, for all w where t(w) is defined, it is the case

that h(w) = t(w). But if t is not defined on w, h may be!

8

OSTIA-D and OSTIA-R [OV96, CVVO98]

1. OSTIA-D assumes a priori knowledge of the domain of the

target function, given as a DFA.

2. OSTIA-R assumes a priori knowledge of the range of the target

function, given as a DFA.

3. Both add steps and checks to OSTIA’s state-merging

procedures to ensure that the merges are consistent with the

domain and range DFA, respectively.

4. Therefore, their time complexity is at least cubic.

9

Our result, in contrast

1. Our result is most like OSTIA-D. As you will see, the a priori

knowledge we consider structures the domain.

2. However, we show both linear time and data complexity in the

sense of de la Higuera (1997).

3. This is possible because if the structure is known, there is no

reason to merge states at all!

10

Part 2: Theoretical Results

1. Delimited SFSTs

2. Output-empty subsequential transducers

3. min change

4. SOSFIA

5. Strong learning in polynomial time and data

6. Theorems and proofs

11

Delimited SFSTs (DSFSTs)

A DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉 where

1. Q is a finite set of states

2. q0, qf ∈ Q are the initial and final states, respectively

3. Σ and ∆ are finite alphabets of symbols

4. δ ⊆ Q× (Σ∪ {⋊,⋉})×∆∗ ×Q is the transition function where

⋊,⋉ 6∈ Σ are special symbols indicating ‘start of the input’

and ‘end of the input’, respectively.

5. q0 has no incoming transitions and exactly one outgoing

transition whose input label is ⋊ which leads to a non-final

state; and

6. qf has no outgoing transitions and every incoming transition

has input label ⋉; and

7. It is deterministic on the input

12

Functions recognizable by DSFSTs

The function recognized by a DSFST τ is

R(τ) =
{

(w, v) | (q0,⋊w⋉, v, qf) ∈ δ∗
}

13

Comparison to typical SFSTs

The DSFST from the previous slide

A SFST from [OG91] recognizing the same function.

14

Theorems about DSFSTs

Theorem 3 (Co-incidence with Subsequential Functions)

The class of subsequential functions and the class of functions

representable with DSFSTs coincide exactly.

Theorem 4 (Canonical DSFSTs) For every subsequential

function t, there is a unique, smallest, onward DSFST representing

it.

Theorem 5 (Structure Preserving Onward Transformations)

Every DSFST can be made onward only by changing the output

transitions; the rest of the structure is preserved.

15

Example of how to make DSFSTs onward

The proof of the last theorem makes use of a function

push lcp(τ, q) which returns a transducer τ ′ in which the longest

common prefix of the outputs of the transitions leaving q is pushed

as a suffix onto the outputs of the transitions entering q (if they

exist).

The DSFST from before (above) and its onward version (below)

16

In contrast, standard SFSTS may have to add an

initial state [OG91]

The standard SFST from before

A canonical standard SFST recognizing the same function

17

Target classes and Output-Empty DSFSTs

1. A DSFST is output-empty if all of its transition outputs are

blanks (�).

2. An output-empty transducer τ� defines a class of functions T

which is exactly the set of functions which can be created by

taking the states and transitions of τ� and replacing the blanks

with output strings, maintaining onwardness.

�:✁

P:✁

P:✁

N:✁

N:✁

V:✁

V:✁

B:✁

B:✁
0

✂:✁

P:✁

N:✁

V:✁

B:✁
P:✁

N:✁
V:✁

B:✁

P:✁

N:✁

V:✁

B:✁

P:✁

N:✁ V:✁

B:✁

18

SOSFIA Overview

1. The input to SOSFIA is an output-empty transducer τ� and a

finite sample S ⊂ Σ∗ ×∆∗ generated from one of the functions

in Tτ� .

2. SOSFIA iterates through the states of τ�. At each state, it sets

the output of each outgoing transition to be the minimal

change in the output generated by this transition, according to

S.

19

Min Change (min change)

1. The common output of an input prefix w in a sample

S ⊂ Σ∗ ×∆∗ for t is the lcp of all t(wv) that are in S:

common outS(w) = lcp

(

{u ∈ ∆∗ | ∃v s.t. (wv, u) ∈ S}
)

2. The minimal change in the output is then simply the difference

between the common outputs of w and wσ.

3. The minimal change in the output in S ⊂ Σ∗ ×∆∗ from w to

wσ is:

min changeS(σ,w) =






common outS(σ) if w = λ

common outS(w)
−1common outS(wσ) otherwise

20

Example illustrating min change

If

S =















(anpa , ama), (anpo , amo),

(ana , ana), (ano , ano),

(anda , anda), (ando , ando)















Then

1. common outS(a) = a

2. common outS(an) = a

3. min changeS(n, a) = λ

4. min change(p, an) = m

5. min change(a, an) = na

6. min change(d, an) = nd

21

SOSFIA

• min change gives us exactly the output needed to maintain

onwardness, which will in turn guarantee that the SOSFIA

converges to the correct function, provided that the sample

contains enough information. Note that the minimal change is

calculable for S because it is finite.

• SOSFIA proceeds through the states of the output-empty

transducer in lexicographic order.

1. Each state q is associated with the shortest string w which

leads to it.

2. For each transition (q, a,�, r) ∈ δ, SOSFIA sets the output

label of this transition to min change(a, w).

22

The Learning Paradigm [dlH97, ?]

Let T be a class of functions and R a class of representations for T.

Definition 1 (Strong characteristic sample) For a

(T,R)-learning algorithm A, a sample CS is a strong characteristic

sample of a representation r ∈ R if for all samples S for L(r) such

that CS ⊆ S, A returns r.

Definition 2 (Strong identification in polynomial time and data)

A class T of functions is strongly identifiable in polynomial time

and data if there exists a (T,R)-learning algorithm A and two

polynomials p() and q() such that:

1. For any sample S of size m for t ∈ R, A returns a hypothesis

r ∈ R in O(p(m)) time.

2. For each representation r ∈ R of size k, there exists a strong

characteristic sample of r for A of size at most O(q(k)).

23

Main Result

Theorem 6 For every output-empty transducer τ�, the SOSFIA

strongly identifies Tτ� in linear time and data.

Notes:

1. The size of a sample S is the sum of the length of the strings it

is composed of: |S| =
∑

(w,v)∈S |w|+ |v|.

2. The size of a DSFST τ = 〈Q, q0, qf ,Σ,∆, δ〉 is

|τ | = |Q|+
∑

(q,σ,u,q′)∈δ |u|.

24

Proof Sketch

1. A strong characteristic sample exists by essentially including

for each state q (reachable by a shortest prefix w ∈ Σ∗) and

each σ ∈ Σ the pairs

(

w, t(w)
)

,
(

wσ, t(wσ)
)

∈ S

and for all situations like this:

q q1 · · · q2w : u
σ1 : λ σ2 : λ σn : λ

σ′ : u′

σ′′ : u′′

(

wσ1 · · ·σnσ
′, uu′

)

,
(

wσ1 · · ·σnσ
′′, uu′′

)

∈ S

25

Proof sketch (con’t)

2. For a target DSFST τ , the data complexity is O(|τ |).

Each of these string pairs can have a left projection of length at

most |Q| and a right projection of length at most
∑

(q,σ,u,q′)∈δ |u|, which yields O(|Q| · (|Q|+ |τ |)) = O(|τ |) since

|Q| is a constant for each target class.

3. The time complexity is O(n ·m) where |S| = n and m equals

the length of the longest string in the right projection of S.

In the worst case, the algorithm launches min change for each

transition, which corresponds to the computation of two lcp.

Each of these calculations is doable in O(n ·m). Each state is

considered exactly once, as is each transition, but since |Q| and

card(δ) are fixed, the time complexity depends only on n and

m.

26

Part 3: Demonstrations

1. Input Strictly Local Phonological Transformations

2. Long-distance Phonological Transformations

3. Morpheme Identification (PF/SF Mappings)

27

Input Strictly Local Functions (Chandlee 2014)

Definition 3 (Input Strictly Local Function, [Cha14, CEH14])

A function f is Input Strictly Local (ISL) if there is a k such that

for all w1, w2 ∈ Σ∗, if suffk−1(w1) = suffk−1(w2) then

tailsf (w1) = tailsf (w2).

1. ISL functions are Markovian: the output written upon reading

σ depends only on the previous k − 1 input symbols (cf.

Strictly Local stringsets [MP71]).

2. Lemma: ISL functions are a proper subclass of subsequential

functions.

3. Theorem: For each k, there is a unique empty-output DSFST

τ� such that Tτ� coincides exactly with the class of ISLk

functions.

28

Phonology

The foundational hypothesis at the center of modern generative

phonology is that there is a phonological mapping from abstract,

lexical ‘underlying’ representations of words and morphemes to

their concrete surface pronunciations.

Of all the logically possible mappings, what kind are the humanly

possible phonological ones?

29

Strictly Local Phonological Mappings

1. Chandlee (2014) establishes that phonological mappings which

are not long-distance nor ‘iterative spreading’ can be modeled

with ISL functions.

2. In a database of over 4000 phonological processes (P-base,

Mielke 2008), she shows at least 94% are ISL.

3. These include substitution (letter-change), epenthesis

(insertion), deletion, and bounded metathesis (letters change

positions).

4. In phonological terms: rewrite rules of the form CAD → CBD

where CAD is a finite stringset, which apply simultaneously.

5. Much stronger computational characterization than the one

suggested by Kaplan and Kay (1994)

30

Demonstration #1: *NC
˚

Repair Typology

1. Fusion (Indonesian): /m@N+pilih/ 7→ [m@milih], ‘to choose’

2. Voicing (Quechua): /kam+pa/ 7→ [kamba], ‘yours’

3. Denasalization (Toba Batak):

/maNinum tuak/ 7→ [maNinup tuak], ‘drink palm wine’
�:✁

P:✁

P:✁

N:✁

N:✁

V:✁

V:✁

B:✁

B:✁

0

✂:✁

P:✁

N:✁

V:✁

B:✁

P:✁

N:✁

V:✁

B:✁

P:✁

N:✁

V:✁

B:✁

P:✁
N:✁ V:✁

B:✁

31

Long-distance phonology

1. Sibilant Harmony (Samala)

/hasxintilawaS/ 7→ [haSxintilawaS] ‘his former gentile name’

2. Provided the right structure is known a priori, classes of

functions which can model long-distance phonology can be

learned.

3. We conjecture there is a class of mappings that is to the

Strictly Piecewise stringsets what ISL functions are to the SL

stringsets, perhaps in a compact, factorized manner

[RHB+10, HR13] and which thus have a common underlying

structure.

4. For proof-of-concept, we demonstrated learning consonantal

harmony using a particular transducer.

q0 : λs : λ S : λs : s S : S
a, s, t, S : s a, S, t, s : S

32

Matching Semantic Forms with Phonetic Forms

(Morpheme Identification)

Verbal constructions in Swahili:

ni + me + ni + penda

1-acc perf 1st-nom like

‘I have liked myself’

Input Data to SOSFIA

〈1-nom〉〈perf〉〈1-acc〉〈like〉, nimenipenda

〈3-nom〉〈pres〉〈1-acc〉〈like〉, ananipenda

〈2-nom〉〈perf〉〈1-pl-acc〉〈beat〉, umetupiga

. . .

33

Morpheme Identification 2

Structure given to SOSFIA

1:� 2:�
G:�

H:�

A:�

0:�

✁:�

3:� 4:�

B:�

C:�

D:�

E:�

F:�

I:�

K:�

J:�

5:�

M:�

L:�

34

Morpheme Identification 3

Structure given to SOSFIA

1:� 2:�

G:ni

H:u

A:a
0:�

✁:�

3:� 4:�

B:ni

C:ku

D:m

E:tu

F:wa

I:ta

J:na

K:me
5:�

L:benda

M:piga

The point is that once the structure is known, onwardness provides

a principled way to align the elements which make up the input

and output strings.

35

Future Work

• Develop ways to address the issue when samples don’t include

every shortest prefix. . .

• Develop a similar result which similarly compares favorably to

OSTIA-R.

• Develop a similar result for semi-deterministic transducers

(previous talk)

• Develop probabilistic versions for each of the above and

successfully apply to practical applications (NLP tasks like

P2G, G2P, transliteration, etc).

36

Conclusion

1. Subclasses with a common structure can be learned very

efficiently by SOSFIA, which takes this common structure as a

priori knowledge.

2. Some of these subclasses (like ISL) are natural from the

perspective of formal language theory.

3. Such subclasses of subsequential transductions are of interest in

certain domains (like phonology).

Thank you.

37

References
[CEH14] Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. Learning strictly local subsequential

functions. Transactions of the Association for Computational Linguistics, 2014.

[Cha14] Jane Chandlee. Strictly Local Phonological Processes. PhD thesis, The University of

Delaware, 2014.

[CVVO98] Antonio Castellanos, Enrique Vidal, Miguel A. Varó, and José Oncina. Language

understanding and subsequential transducer learning. Computer Speech and Language,

12:193–228, 1998.

[dlH97] Colin de la Higuera. Characteristic sets for polynomial grammatical inference. Machine

Learning, 27(2):125–138, 1997.

[HR13] Jeffrey Heinz and James Rogers. Learning subregular classes of languages with

factored deterministic automata. In Andras Kornai and Marco Kuhlmann, editors,

Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13), pages 64–71, Sofia,

Bulgaria, August 2013. Association for Computational Linguistics.

[MP71] Robert McNaughton and Seymour Papert. Counter-Free Automata. MIT Press, 1971.

[OG91] Jose Oncina and Pedro Garcia. Inductive learning of subsequential functions.

Technical Report DSIC II-34, University Politécnia de Valencia, 1991.

[OGV93] José Oncina, Pedro Garćıa, and Enrique Vidal. Learning subsequential transducers for

pattern recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,

15:448–458, May 1993.

[OV96] José Oncina and Miguel A. Varò. Using domain information during the learning of a

subsequential transducer. Lecture Notes in Computer Science - Lecture Notes in Artificial

Intelligence, pages 313–325, 1996.

[RHB+10] James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David

Wellcome, and Sean Wibel. On languages piecewise testable in the strict sense. In

Christian Ebert, Gerhard Jäger, and Jens Michaelis, editors, The Mathematics of

Language, volume 6149 of Lecture Notes in Artifical Intelligence, pages 255–265. Springer,

2010.

38

